【佛山市选2013】JZOJ2020年8月7日T4 排列
【佛山市选2013】JZOJ2020年8月7日T4 排列
题目
描述
一个关于n个元素的排列是指一个从{1, 2, …, n}到{1, 2, …, n}的一一映射的函数。这个排列p的秩是指最小的k,使得对于所有的i = 1, 2, …, n,都有p(p(…p(i)…)) = i(其中,p一共出现了k次)。
例如,对于一个三个元素的排列p(1) = 3, p(2) = 2, p(3) = 1,它的秩是2,因为p(p(1)) = 1, p(p(2)) = 2, p(p(3)) = 3。
给定一个n,我们希望从n!个排列中,找出一个拥有最大秩的排列。例如,对于n=5,它能达到最大秩为6,这个排列是p(1) = 4, p(2) = 5, p(3) = 2, p(4) = 1, p(5) = 3。
当我们有多个排列能得到这个最大的秩的时候,我们希望你求出字典序最小的那个排列。对于n个元素的排列,排列p的字典序比排列r小的意思是:存在一个整数i,使得对于所有j < i,都有p(j) = r(j),同时p(i) < r(i)。对于5来说,秩最大而且字典序最小的排列为:p(1) = 2, p(2) = 1, p(3) = 4, p(4) = 5, p(5) = 3。
数据
对于40%的数据,有1≤N≤100。
对于所有的数据,有1≤N≤10000。
题解
题意
简化一下
给出\(n\)
让你生成一些环
要求环的总大小是\(n\)并使每个环的大小的最小公倍数最大
多组数据
分析
最小公倍数最大
那么每个环的大小两两互质肯定是最优的
最小公倍数即可表示成\(p1^{x1}*p2^{x2}*……*pn^{xn}\)
那么呢
设\(f[i][j]\)表示选了\(i\)个质数和为\(j\)的最大秩
然后对于第\(i\)个质数暴力枚举取多少次方
记个前驱来生成序列
完事
Code
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,i,j,ii,mx,num,x,sum,ansnum,last,p[2005],a[10005],g[2005][10005],ans1[10005],ss[10005];
bool b[10005];
double add,m,lg,f[2005][10005];
int main()
{
freopen("T4.in","r",stdin);
freopen("T4.out","w",stdout);
scanf("%d",&t);
for (i=1;i<=t;i++)
{
scanf("%d",&a[i]);
mx=max(mx,a[i]);
}
for (i=2;i<=mx;i++)
for (j=2;i*j<=mx;j++)
b[i*j]=true;
for (i=2;i<=mx;i++)
if (b[i]==false)
{
num++;
p[num]=i;
}
for (i=0;i<num;i++)
for (j=0;j<=mx;j++)
{
if (f[i][j]>f[i+1][j])
{
f[i+1][j]=f[i][j];
g[i+1][j]=j;
}
x=p[i+1];
lg=log(x);
for (add=lg;x+j<=mx;x*=p[i+1],add+=lg)
{
if (f[i][j]+add>=f[i+1][x+j])
{
f[i+1][x+j]=f[i][j]+add;
g[i+1][x+j]=j;
}
}
}
for (ii=1;ii<=t;ii++)
{
n=a[ii];
if (n==1)
{
printf("1\n");
continue;
}
m=0;
sum=n;
ansnum=0;
for (i=1;i<=n;i++)
{
if (f[num][i]>m)
{
m=f[num][i];
x=i;
}
}
for (i=1;i<=n-x;i++)
{
ansnum++;
ans1[ansnum]=1;
}
i=num;
while (i)
{
ansnum++;
ans1[ansnum]=x-g[i][x];
x=g[i][x];
i--;
}
sort(ans1+1,ans1+ansnum+1);
last=0;
x=1;
while (ans1[x]==0&&x<=num) x++;
for (i=1;i<=n;i++)
{
if (i==last+ans1[x])
{
ss[i]=last+1;
last+=ans1[x];
x++;
}
else ss[i]=i+1;
}
for (i=1;i<=n;i++)
printf("%d ",ss[i]);
printf("\n");
}
fclose(stdin);
fclose(stdout);
return 0;
}
【佛山市选2013】JZOJ2020年8月7日T4 排列的更多相关文章
- 【佛山市选2013】JZOJ2020年8月7日提高组T3 海明距离
[佛山市选2013]JZOJ2020年8月7日提高组T3 海明距离 题目 描述 对于二进制串a,b,他们之间的海明距离是指两个串异或之后串中1的个数.异或的规则为: 0 XOR 0 = 0 1 XOR ...
- 【佛山市选2013】JZOJ2020年8月7日提高组T2 树环转换
[佛山市选2013]JZOJ2020年8月7日提高组T2 树环转换 题目 描述 给定一棵N个节点的树,去掉这棵树的一条边需要消耗值1,为这个图的两个点加上一条边也需要消耗值1.树的节点编号从1开始.在 ...
- 【佛山市选2013】JZOJ2020年8月7日提高组T1 回文子序列
[佛山市选2013]JZOJ2020年8月7日提高组T1 回文子序列 题目 描述 回文序列是指左右对称的序列.例如1 2 3 2 1是回文序列,但是1 2 3 2 2就不是.我们会给定一个N×M的矩阵 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T4 字符串距离
[2014广州市选day1]JZOJ2020年9月12日提高B组T4 字符串距离 题目 Description 给出两个由小写字母组成的字符串 X 和Y ,我们需要算出两个字符串的距离,定义如下: 1 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T3 消除游戏
[2014广州市选day1]JZOJ2020年9月12日提高B组T3 消除游戏 题目 Description 相信大家玩过很多网络上的消除类型的游戏,一般来说就是在一个大拼图内找出相同的部分进行最大程 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T2 导弹拦截
[2014广州市选day1]JZOJ2020年9月12日提高B组T2 导弹拦截 题目 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统 V1.0.但是这种导弹拦截系统有一个缺 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你
[五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...
- 【GDOI2007】JZOJ2020年8月10日提高组T1 夏娜的菠萝包
[GDOI2007]JZOJ2020年8月10日提高组T1 夏娜的菠萝包 题目 Description 夏娜很喜欢吃菠萝包,她的经纪人RC每半个月就要为她安排接下来的菠萝包计划.今天是7月份,RC又要 ...
- JZOJ2020年8月11日提高组T4 景点中心
JZOJ2020年8月11日提高组T4 景点中心 题目 Description 话说宁波市的中小学生在镇海中学参加计算机程序设计比赛,比赛之余,他们在镇海中学的各个景点参观.镇海中学共有n个景点,每个 ...
随机推荐
- 面试小问题——Object中有哪些常用方法?
一.equals方法 Object类中的equals方法用于检测一个对象是否等于另外一个对象.Java语言规范要求equals方法具有下面的特性: (1)自反性:对于任何非空引用x,x.equals( ...
- C#4语法新特性
C#4,.NET Framework 4.0, Visual Studio 2010 C#4.0新引进的语法基于.Net Framework 4.0.主要引进的语法:动态类型,命名参数.可选参数,优 ...
- 编码风格:Mvc模式下SSM环境,代码分层管理
本文源码:GitHub·点这里 || GitEE·点这里 一.分层策略 MVC模式与代码分层策略,MVC全名是ModelViewController即模型-视图-控制器,作为一种软件设计典范,用一种业 ...
- ASP.NET Core框架揭秘[博文汇总-持续更新]
第1部分 跨平台开发体验 1 跨平台开发体验 001 跨平台开发体验: Windows [上篇] 002 跨平台开发体验: Windows [中篇] 003 跨平台开发体 ...
- 【SpringBoot】12.全局配置文件(properties)与yml配置文件
一.SpringBoot全局配置文件 1.修改内嵌容器端口号 #application.properties server.port=8888 2.自定义属性的配置 使用@Value来给成员变量赋值 ...
- stm32与地磁传感器HMC5883L
1.简介 霍尼韦尔 HMC5883L 是一种表面贴装的高集成模块,并带有数字接口的弱磁传感器芯片,应用于低成本罗盘和磁场检测领域.HMC5883L 包括最先进的高分辨率 HMC118X 系列磁阻传感器 ...
- C++ 设计模式 1:概述
1 设计模式概述 1.1 定义 设计模式是在特定环境下人们解决某类重复出现问题的一套成功或有效的解决方案. 1.2 设计模式的种类 GoF 提出的设计模式有 23 个,包括: 创建型模式:如何创建对象 ...
- Android10_原理机制系列_Android消息机制(Handler)详述
概述 在Android中的多进程.多线程中提过,只有主线程(UI线程)可以更新UI,其他线程不可以,所以一般耗时操作放到子线程.子线程可以通过Handler将相关信息通知到主线程. Android的消 ...
- (i春秋 Misc)ReCreators - CryMisc
[i春秋 Misc] [题目链接] i春秋 Misc ReCreators CryMisc ReCreators 下载得到一个文件.老规矩,放入010文本编辑器中查看: 文件头是: KDMV 不清楚. ...
- Beyond Compare-这款检查图片工具真的绝了!
无论是出去旅游,还是参加聚会,在朋友圈分享美美的图片,已经成为了很多都市人的日常.在分享图片前,大多数人都会选择使用滤镜.风格等功能对照片进行一定的美化.但有时候美化的程度比较轻微,连修图的人都无法判 ...