【佛山市选2013】JZOJ2020年8月7日T4 排列
【佛山市选2013】JZOJ2020年8月7日T4 排列
题目
描述
一个关于n个元素的排列是指一个从{1, 2, …, n}到{1, 2, …, n}的一一映射的函数。这个排列p的秩是指最小的k,使得对于所有的i = 1, 2, …, n,都有p(p(…p(i)…)) = i(其中,p一共出现了k次)。
例如,对于一个三个元素的排列p(1) = 3, p(2) = 2, p(3) = 1,它的秩是2,因为p(p(1)) = 1, p(p(2)) = 2, p(p(3)) = 3。
给定一个n,我们希望从n!个排列中,找出一个拥有最大秩的排列。例如,对于n=5,它能达到最大秩为6,这个排列是p(1) = 4, p(2) = 5, p(3) = 2, p(4) = 1, p(5) = 3。
当我们有多个排列能得到这个最大的秩的时候,我们希望你求出字典序最小的那个排列。对于n个元素的排列,排列p的字典序比排列r小的意思是:存在一个整数i,使得对于所有j < i,都有p(j) = r(j),同时p(i) < r(i)。对于5来说,秩最大而且字典序最小的排列为:p(1) = 2, p(2) = 1, p(3) = 4, p(4) = 5, p(5) = 3。
数据
对于40%的数据,有1≤N≤100。
对于所有的数据,有1≤N≤10000。
题解
题意
简化一下
给出\(n\)
让你生成一些环
要求环的总大小是\(n\)并使每个环的大小的最小公倍数最大
多组数据
分析
最小公倍数最大
那么每个环的大小两两互质肯定是最优的
最小公倍数即可表示成\(p1^{x1}*p2^{x2}*……*pn^{xn}\)
那么呢
设\(f[i][j]\)表示选了\(i\)个质数和为\(j\)的最大秩
然后对于第\(i\)个质数暴力枚举取多少次方
记个前驱来生成序列
完事
Code
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,i,j,ii,mx,num,x,sum,ansnum,last,p[2005],a[10005],g[2005][10005],ans1[10005],ss[10005];
bool b[10005];
double add,m,lg,f[2005][10005];
int main()
{
freopen("T4.in","r",stdin);
freopen("T4.out","w",stdout);
scanf("%d",&t);
for (i=1;i<=t;i++)
{
scanf("%d",&a[i]);
mx=max(mx,a[i]);
}
for (i=2;i<=mx;i++)
for (j=2;i*j<=mx;j++)
b[i*j]=true;
for (i=2;i<=mx;i++)
if (b[i]==false)
{
num++;
p[num]=i;
}
for (i=0;i<num;i++)
for (j=0;j<=mx;j++)
{
if (f[i][j]>f[i+1][j])
{
f[i+1][j]=f[i][j];
g[i+1][j]=j;
}
x=p[i+1];
lg=log(x);
for (add=lg;x+j<=mx;x*=p[i+1],add+=lg)
{
if (f[i][j]+add>=f[i+1][x+j])
{
f[i+1][x+j]=f[i][j]+add;
g[i+1][x+j]=j;
}
}
}
for (ii=1;ii<=t;ii++)
{
n=a[ii];
if (n==1)
{
printf("1\n");
continue;
}
m=0;
sum=n;
ansnum=0;
for (i=1;i<=n;i++)
{
if (f[num][i]>m)
{
m=f[num][i];
x=i;
}
}
for (i=1;i<=n-x;i++)
{
ansnum++;
ans1[ansnum]=1;
}
i=num;
while (i)
{
ansnum++;
ans1[ansnum]=x-g[i][x];
x=g[i][x];
i--;
}
sort(ans1+1,ans1+ansnum+1);
last=0;
x=1;
while (ans1[x]==0&&x<=num) x++;
for (i=1;i<=n;i++)
{
if (i==last+ans1[x])
{
ss[i]=last+1;
last+=ans1[x];
x++;
}
else ss[i]=i+1;
}
for (i=1;i<=n;i++)
printf("%d ",ss[i]);
printf("\n");
}
fclose(stdin);
fclose(stdout);
return 0;
}
【佛山市选2013】JZOJ2020年8月7日T4 排列的更多相关文章
- 【佛山市选2013】JZOJ2020年8月7日提高组T3 海明距离
[佛山市选2013]JZOJ2020年8月7日提高组T3 海明距离 题目 描述 对于二进制串a,b,他们之间的海明距离是指两个串异或之后串中1的个数.异或的规则为: 0 XOR 0 = 0 1 XOR ...
- 【佛山市选2013】JZOJ2020年8月7日提高组T2 树环转换
[佛山市选2013]JZOJ2020年8月7日提高组T2 树环转换 题目 描述 给定一棵N个节点的树,去掉这棵树的一条边需要消耗值1,为这个图的两个点加上一条边也需要消耗值1.树的节点编号从1开始.在 ...
- 【佛山市选2013】JZOJ2020年8月7日提高组T1 回文子序列
[佛山市选2013]JZOJ2020年8月7日提高组T1 回文子序列 题目 描述 回文序列是指左右对称的序列.例如1 2 3 2 1是回文序列,但是1 2 3 2 2就不是.我们会给定一个N×M的矩阵 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T4 字符串距离
[2014广州市选day1]JZOJ2020年9月12日提高B组T4 字符串距离 题目 Description 给出两个由小写字母组成的字符串 X 和Y ,我们需要算出两个字符串的距离,定义如下: 1 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T3 消除游戏
[2014广州市选day1]JZOJ2020年9月12日提高B组T3 消除游戏 题目 Description 相信大家玩过很多网络上的消除类型的游戏,一般来说就是在一个大拼图内找出相同的部分进行最大程 ...
- 【2014广州市选day1】JZOJ2020年9月12日提高B组T2 导弹拦截
[2014广州市选day1]JZOJ2020年9月12日提高B组T2 导弹拦截 题目 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统 V1.0.但是这种导弹拦截系统有一个缺 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你
[五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...
- 【GDOI2007】JZOJ2020年8月10日提高组T1 夏娜的菠萝包
[GDOI2007]JZOJ2020年8月10日提高组T1 夏娜的菠萝包 题目 Description 夏娜很喜欢吃菠萝包,她的经纪人RC每半个月就要为她安排接下来的菠萝包计划.今天是7月份,RC又要 ...
- JZOJ2020年8月11日提高组T4 景点中心
JZOJ2020年8月11日提高组T4 景点中心 题目 Description 话说宁波市的中小学生在镇海中学参加计算机程序设计比赛,比赛之余,他们在镇海中学的各个景点参观.镇海中学共有n个景点,每个 ...
随机推荐
- Mybatis的基础配置
mybatis相关配置 mybatis核心文件配置的用法以及事例(初级) properties标签:获取外部的配置文件 <properties resource="jdbc.prope ...
- Java入门(5)
阅读书目:Java入门经典(第7版) 作者:罗格斯·卡登海德 protected变量只能在其所在的类,该类的子类,以及同一个包里的其他类中使用.包是一组用于完成相同目标的相关类. private变量只 ...
- javascript-闭包【面试必备】
闭包 定义:内层函数可以访问外层函数作用域的变量 意义/用途: 1.封装细节 2.实现模块化 3.常用实战li列表 // querySelectorAll es5支持的一个类似于jq的复杂选择器选取d ...
- vscode remote wsl 的NoPermissions permission denied问题
在 wsl这个目录 code-insiders . 之后会报这个错 无法打开"wsl": Unable to read file (NoPermissions (FileSyst ...
- [UNCTF2020]BetterCpu WriteUp
这题不同前一题虚拟机ezvm一样,指令很多而且复杂,需要通过写文档和脚本来化简过程. 直接丢进IDA7.2(如果使用IDA7.0则虚拟机的emulator部分会分析出错)查看. 进入main函数后按F ...
- 再聊 Blazor,它是否值得你花时间学习
之前写了一篇文章<快速了解 ASP.NET Core Blazor>,大家关心最多的问题是,我该不该花时间去学习 Blazor.今天聊聊这个话题,并表达一下我个人的看法. 在此之前,我还是 ...
- 自行实现的jar包中,日志库的适配实现
日常情况下,我们自己都会自行实现一些基础的jar包,如dao包.service包或一些其他完成特定功能的jar包.如果没有一套调试日志信息,出现问题时想查找问题非常不方便.可能大多数小伙伴都会有自 ...
- C#高级编程之泛型一(泛型的引入、泛型的使用、何为泛型)
为何引入泛型 当我们要对不同类型的参数执行类似的方法时:如下所示功能打印传入参数的相关信息. class CommonMethdod { /// <summary> /// show in ...
- Cisco思科模拟器路由器各个端口IP地址的配置及路由协议RIP的配置 入门详解 - 精简归纳
Cisco思科模拟器路由器各个端口IP地址的配置及路由协议RIP的配置 入门详解 - 精简归纳 JERRY_Z. ~ 2020 / 11 / 21 转载请注明出处!️ 附: 交流方式: ️ ️ ️ Q ...
- 状态模式(Established close)
状态模式(Established close) 引子 铁扇公主:以前陪我看月亮的时候,叫人家小甜甜,现在新人胜旧人了,叫人家牛夫人! 定义 Allow an object to alter its b ...