学了莫比乌斯反演之后对初阶问题没有任何问题了,除法分块也码到飞起,但是稍微变形我就跪了。用瞪眼观察法观察别人题解观察到主要内容除了柿子变形之外,主要就是对于miu函数的操作求前缀和。进而了解miu函数,miu函数是在这个数是否有平方因子的个数,每次推的套路是先用欧拉筛筛出来所有需要的函数,然后用每次需要用到的函数进行累计迭代加到前缀和,二次过筛,然后堆起来前缀和,用除法分块就行了,这个方法屡试不爽。

两道题,一道是洛谷P2257 YY的GCD

这道题求的是1-n和1-m区间内gcd为质数的个数,对此我们有暴力O(nmtlogn)算法,用莫比乌斯反演之后,我们枚举质数,每次来一遍分块,可以降到O(t * sqrtn + n),显然对于1e7这种级别的,质数都有66w个,复杂度显而易见是不够优秀的,那么我们需要一些加速,就是用前缀和处理出来这个区间内有质数gcd的数目,然后跑分块就可行了,复杂度根号

#include <bits/stdc++.h>
using namespace std;
#define limit (10000000 + 5)//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-6
#define FASTIO ios::sync_with_stdio(false);cin.tie(0);
#define ff(a) printf("%d\n",a );
#define pi(a,b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\dabiao.txt", "wt", stdout)
#define debug(x) cout<<x<<endl
typedef long long ll;
typedef unsigned long long ull;
inline ll read(){
ll sign = 1, x = 0;char s = getchar();
while(s > '9' || s < '0' ){if(s == '-')sign = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = (x << 3) + (x << 1) + s - '0';s = getchar();}
return x * sign;
}//快读
void write(ll x){
if(x < 0) putchar('-'),x = -x;
if(x / 10) write(x / 10);
putchar(x % 10 + '0');
}
int prime[limit],tot,num[limit],miu[limit];
ll sum[limit];
void get_prime(const int &n = 1e7){
memset(num,1,sizeof(num));
num[1] = num[0] = 0;
miu[1] = 1;
rep(i,2,n){
if(num[i])prime[++tot] = i,miu[i] = -1;
for(int j = 1; j <= tot && prime[j] * i <= n ; ++j){
num[prime[j] * i] = 0;
if(i % prime[j] == 0){
miu[i * prime[j]] = 0;
break;
}else{
miu[i * prime[j]] = -miu[i];//莫比乌斯函数
}
}
}
rep(i ,1,tot){
for(int j = prime[i] ; j <= n ; j += prime[i]){
sum[j] += miu[j / prime[i]];//几个平方因子
}
}
rep(i ,1,n){
sum[i] += sum[i-1];
} }//素数筛
ll n,m;
const ll d = 1;
ll calc(){
ll ans = 0;
for(int l = 1,r ; l <= min(n/d,m/d); l = r + 1){
//值域分块
ll t = n / d , s = m / d;
r = min(t / (t / l), s / (s / l));
ans += (sum[r] - sum[l - 1]) * (t / l) * (s / l);
} return ans;
}
int main() {
#ifdef LOCAL
FOPEN;
#endif
get_prime(10000000);
int kase = read();
while (kase--){
n = read(), m = read();
write(calc()),putchar('\n');
}
return 0;
}

AC Code

吐槽一下卡常,这卡得什么玩意儿,快读快写都上吸了氧才ac,吐了吐了

然后是HDU 5663

这题一看就特别熟悉,直接处理出是平方数的μ前缀和,然后跑一边莫比乌斯反演就行

#include <bits/stdc++.h>
using namespace std;
#define limit (10000000 + 5)//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-6
#define FASTIO ios::sync_with_stdio(false);cin.tie(0);
#define ff(a) printf("%d\n",a );
#define pi(a,b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\dabiao.txt", "wt", stdout)
#define debug(x) cout<<x<<endl
typedef long long ll;
typedef unsigned long long ull;
inline ll read(){
ll sign = 1, x = 0;char s = getchar();
while(s > '9' || s < '0' ){if(s == '-')sign = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = (x << 3) + (x << 1) + s - '0';s = getchar();}
return x * sign;
}//快读
void write(ll x){
if(x < 0) putchar('-'),x = -x;
if(x / 10) write(x / 10);
putchar(x % 10 + '0');
}
int prime[limit],tot,num[limit],miu[limit];
ll sum[limit];
void get_prime(const int &n = 1e7){
memset(num,1,sizeof(num));
num[1] = num[0] = 0;
miu[1] = 1;
rep(i,2,n){
if(num[i])prime[++tot] = i,miu[i] = -1;
for(int j = 1; j <= tot && prime[j] * i <= n ; ++j){
num[prime[j] * i] = 0;
if(i % prime[j] == 0){
miu[i * prime[j]] = 0;
break;
}else{
miu[i * prime[j]] = -miu[i];//莫比乌斯函数
}
}
}
for(int i = 1 ; i * i <= n ; ++i){
for(int j = i * i ; j <= n ; j += i * i){
sum[j] += miu[j / i / i];//记录所有的平方
}
}
rep(i,2,n){
sum[i] += sum[i-1];
}
}//素数筛
ll n,m;
const ll d = 1;
ll calc(){
ll ans = 0;
for(int l = 1,r ; l <= min(n/d,m/d); l = r + 1){
//值域分块
ll t = n / d , s = m / d;
r = min(t / (t / l), s / (s / l));
ans += (sum[r] - sum[l - 1]) * (t / l) * (s / l);
} return ans;
}
int main() {
#ifdef LOCAL
FOPEN;
#endif
get_prime(1e7 + 1);
int kase = read();
rep(ka,1,kase){
n = read(), m = read();
printf("%lld\n",n * m - calc());
}
return 0;
}

AC Code

嘿哈

莫比乌斯反演进阶-洛谷P2257/HDU5663的更多相关文章

  1. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  2. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  3. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  4. 洛谷P2257 YY的GCD(莫比乌斯反演)

    传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...

  5. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  6. 洛谷 P2257 【YY的GCD】

    这道题还是和上一道[ZAP]有那么一点点的相似哈 题目大意 给定N, M,求1<=x<=N, 1<=y<=M且\(gcd(x, y)\)为质数的(x, y)有多少对 如果对莫比 ...

  7. 洛谷P2257 YY的GCD

    今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...

  8. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  9. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

随机推荐

  1. 一篇搞懂Java的基本数据类型

    byte 基本类型:byte 包装类:java.lang.Byte 大小:8bit 默认值:0 取值范围:-128~127 Byte.MIN_VALUE Byte.MAX_VALUE 二进制补码表示 ...

  2. js 元素添加多个监听

    function addListener(element,e,fn){     if(element.addEventListener){         element.addEventListen ...

  3. ps怎么做发光字体效果 ps中最简单的发光字教程

    ps中最简单的发光字教程 我们先用[文字工具]输入文字(比如:发光效果),字体填充为白色,如图所示. 我们选中文字的图层,点击[FX]找到[外发光],如图所示. 接着,我们在外发光里面把颜色设置为紫色 ...

  4. 《.NET 5.0 背锅案》第1集:验证 .NET 5.0 正式版 docker 镜像问题

    今天我们分析了博客站点的2次故障(故障一.故障二),发现一个巧合的地方,.NET 5.0 正式版的 docker 镜像是在11月10日提前发布上线的. 而在11月10日下午4点左右,由于 CI 服务器 ...

  5. Git操作:远程仓库(git remote)的添加、管理和删除

    这是你的git仓库,他已经添加了一个远程仓库,可以用git remote -v查看绑定的仓库列表,他会以<仓库名>  <仓库地址>的形式展示出来(一个仓库会显示两遍): $ g ...

  6. python_登陆验证文件上传下载_socket

    client.py import os import sys import json import struct import socket # 下载--接收文件 def download(sk): ...

  7. python类继承中构造子的调用

    python面向对象中的继承关系中,子类对父类的构造方法的调用有两种方法: 父类名.__init__(self,参数) #注意名字是父类 super(本子类名,self)__init__(其他参数) ...

  8. 再聊 Blazor,它是否值得你花时间学习

    之前写了一篇文章<快速了解 ASP.NET Core Blazor>,大家关心最多的问题是,我该不该花时间去学习 Blazor.今天聊聊这个话题,并表达一下我个人的看法. 在此之前,我还是 ...

  9. oracle的三种连接方式

    1.通过sid jdbc:oracle:thin:@host:port:SID Example: jdbc:oracle:thin:@localhost:1521:sid_test 2.通过servi ...

  10. 流量控制--5.Classless Queuing Disciplines (qdiscs)

    Classless Queuing Disciplines (qdiscs) 本文涉及的队列规则(Qdisc)都可以作为接口上的主qdisc,或作为一个classful qdiscs的叶子类.这些是L ...