基于ConcurrentHashMap的本地缓存


在系统中,有些数据,数据量小,但是访问十分频繁(例如国家标准行政区域数据),针对这种场景,需要将数据搞到应用的本地缓存中,以提升系统的访问效率,减少无谓的数据库访问(数据库访问占用数据库连接,同时网络消耗比较大),但是有一点需要注意,就是缓存的占用空间以及缓存的失效策略

代码实现

package com.mine.localcache;

import java.util.Date;
import java.util.Map;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.ConcurrentHashMap; /**
* ******************************
* createTime: 2019/7/15 9:56
* description: 基于ConcurrentHashMap的本地缓存解决方案
* version: V1.0
* ******************************
*/
public class LocalCache { /**
* 默认有效时长,单位:秒
*/
private static final int DEFUALT_TIMEOUT = 3600 * 1000; private static final long SECOND_TIME = 1000; private static final Map<String, Object> map; private static Timer timer; /**
* 初始化
*/
static {
timer = new Timer();
map = new ConcurrentHashMap<>();
} /**
* 私有构造函数,工具类不允许实例化
*/
private LocalCache() {} /**
* 清除缓存任务类
*/
static class CleanWorkerTask extends TimerTask { private String key; public CleanWorkerTask(String key) {
this.key = key;
} public void run() {
LocalCache.remove(key);
}
} /**
* 增加缓存
*
* @param key
* @param value
*/
public static void put(String key, Object value) {
map.put(key, value);
timer.schedule(new CleanWorkerTask(key), DEFUALT_TIMEOUT);
} /**
* 增加缓存
*
* @param key
* @param value
* @param timeout 有效时长
*/
public static void put(String key, Object value, int timeout) {
map.put(key, value);
timer.schedule(new CleanWorkerTask(key), timeout * SECOND_TIME);
} /**
* 增加缓存
*
* @param key
* @param value
* @param expireTime 过期时间
*/
public static void put(String key, Object value, Date expireTime) {
map.put(key, value);
timer.schedule(new CleanWorkerTask(key), expireTime);
} /**
* 批量增加缓存
*
* @param m
*/
public static void putAll(Map<String, Object> m) {
map.putAll(m); for (String key : m.keySet()) {
timer.schedule(new CleanWorkerTask(key), DEFUALT_TIMEOUT);
}
} /**
* 批量增加缓存
*
* @param m
*/
public static void putAll(Map<String, Object> m, int timeout) {
map.putAll(m); for (String key : m.keySet()) {
timer.schedule(new CleanWorkerTask(key), timeout * SECOND_TIME);
}
} /**
* 批量增加缓存
*
* @param m
*/
public static void putAll(Map<String, Object> m, Date expireTime) {
map.putAll(m); for (String key : m.keySet()) {
timer.schedule(new CleanWorkerTask(key), expireTime);
}
} /**
* 获取缓存
*
* @param key
* @return
*/
public static Object get(String key) {
return map.get(key);
} /**
* 查询缓存是否包含key
*
* @param key
* @return
*/
public static boolean containsKey(String key) {
return map.containsKey(key);
} /**
* 删除缓存
*
* @param key
*/
public static void remove(String key) {
map.remove(key);
} /**
* 删除缓存
*
* @param o
*/
public static void remove(Object o) {
map.remove(o);
} /**
* 返回缓存大小
*
* @return
*/
public static int size() {
return map.size();
} /**
* 清除所有缓存
*
* @return
*/
public static void clear() {
if (size() > 0) {
map.clear();
} // 取消延时任务,重新创建Timer
timer.cancel();
timer = new Timer();
}
}

测试Demo

public class TestDemo {

    public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 20000; i++) {
LocalCache.put(i + "", "test for " + i , 20);
} System.out.println("ok"); Thread.sleep(10 * 1000); for (int i = 0; i < 20000; i++) {
System.out.println(LocalCache.get(i + ""));
} Thread.sleep(15 * 1000); for (int i = 0; i < 20000; i++) {
System.out.println(LocalCache.get(i + ""));
}
}
}

总结分析

该缓存是基于ConcurrentHashMap配合Timer实现的本地缓存策略,但是它有其瓶颈,比如:
LRU:Least Recently Used,最近最少使用 算法实现等
都均未实现,不过可以用作学习和参考使用 生产级别推荐使用:Guava cache构建本地缓存

基于ConcurrentHashMap的本地缓存的更多相关文章

  1. Java学习之ConcurrentHashMap实现一个本地缓存

    ConcurrentHashMap融合了Hashtable和HashMap二者的优势. Hashtable是做了线程同步,HashMap未考虑同步.所以HashMap在单线程下效率较高,Hashtab ...

  2. 使用Guava cache构建本地缓存

    前言 最近在一个项目中需要用到本地缓存,在网上调研后,发现谷歌的Guva提供的cache模块非常的不错.简单易上手的api:灵活强大的功能,再加上谷歌这块金字招牌,让我毫不犹豫的选择了它.仅以此博客记 ...

  3. MUI - 基于plus.downloader的图片懒加载功能,支持本地缓存

    基于plus.downloader的图片懒加载功能,支持本地缓存 简单说一下 在app中,对一些变动不频繁的图片数据(如个人头像等),是需要存储在本地的.我相信这对大多数的app都是强需求的. 怎么使 ...

  4. 【开源项目系列】如何基于 Spring Cache 实现多级缓存(同时整合本地缓存 Ehcache 和分布式缓存 Redis)

    一.缓存 当系统的并发量上来了,如果我们频繁地去访问数据库,那么会使数据库的压力不断增大,在高峰时甚至可以出现数据库崩溃的现象.所以一般我们会使用缓存来解决这个数据库并发访问问题,用户访问进来,会先从 ...

  5. Guava Cache 本地缓存组件浅析

    cache组件中核心的类和接口列举如下: 接口: Cache 本地缓存的顶级接口,提供一些对缓存进行get,put的方法,以及获取缓存统计数据的方法等. LoadingCache 继承了Cache接口 ...

  6. Guava Cache本地缓存

    Guava介绍 Guava是一种基于开源的Java库,其中包含谷歌正在由他们很多项目使用的很多核心库. 这个库是为了方便编码,并减少编码错误. 这个库提供用于集合,缓存,支持原语,并发性,常见注解,字 ...

  7. 本地缓存解决方案-Caffeine Cache

    1.1 关于Caffeine Cache ​ Google Guava Cache是一种非常优秀本地缓存解决方案,提供了基于容量,时间和引用的缓存回收方式.基于容量的方式内部实现采用LRU算法,基于引 ...

  8. Guava的两种本地缓存策略

    Guava的两种缓存策略 缓存在很多场景下都需要使用,如果电商网站的商品类别的查询,订单查询,用户基本信息的查询等等,针对这种读多写少的业务,都可以考虑使用到缓存.在一般的缓存系统中,除了分布式缓存, ...

  9. 微信小程序之本地缓存(十)

    [未经作者本人同意,请勿以任何形式转载] 目前,微信给每个小程序提供了10M的本地缓存空间(哎哟妈呀好大) 有了本地缓存,你的小程序可以做到: 离线应用(已测试在无网络的情况下,可以操作缓存数据) 流 ...

随机推荐

  1. 嵌入式QT开发视频教程-供参考

    免费嵌入式QT开发视频教程 https://pan.baidu.com/s/1bprhJ2Z QT初级到高级编程视频教程--丁林松.rarhttp://www.jisoupan.com/share/2 ...

  2. MonoBehaviour.StartCoroutine开启协同程序

    StartCoroutine协同程序 StartCoroutine(IEnumerator) StartCoroutine(string methodName) StartCoroutine(stri ...

  3. Python Selenium百度搜索翻页查找文字

    #!/usr/bin/python # -*- coding: utf- -*- from selenium import webdriver import time # browser = webd ...

  4. 在ASP.NET 中有哪些数据验证控件(请解释ASP.NET中以什么方式进行数据验证)?

    (1)RequiredFieldValidator:检查用户是否输入: (2)CompareValidator:检查两个表单输入项的输入信息是否存在某种指定关系,比如大.等于等: (3)RangeVa ...

  5. windows 64位上安装mysql 5.7版本

    下载的mysql不是安装exe的软件,而是在windows上编译好的二进制mysql软件 下载安装之后配置环境变量:将目录D:\Program Files\mysql-5.7.18-winx64\my ...

  6. 尚硅谷 dubbo学习视频

    1 1.搭建zookpeer注册中心 windows下载zooker  需要修改下zoo_sample .cfg为zoo.cnf 然后需要zoo.cnf中数据文件的路径 第五步:把zoo_sample ...

  7. 【原创】Linux中断子系统(四)-Workqueue

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  8. app之功能测试

    1 什么是APP测试? App测试就是软件工程师对这类应用软件进行功能测试,性能测试,安全性测试以及兼容性测试等. 对于app测试我们一般采用的是黑盒测试方法,也会在必要的时候进行自动化测试以及性能测 ...

  9. JavaScript基础避免使用eval()(006)

    许多人认为eval()方法是邪恶(evil)的.这个方法可以把任意字符串当成Javascript代码来执行.我们应该尽可能的不用eval()方法.比如,可以使用方括号来得到对象属性的值: // ant ...

  10. VSCode 使用 Settings Sync 同步配置和插件

    简要说明: Settings Sync插件可以在不同的计算机同步VSCode配置和插件. 安装和配置 在VSCode的插件栏搜索settings sync并安装.在安装完成之后如果需要重新载入就点击重 ...