HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意:
已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\)
思路:
杜教筛基础题?
很显然这里已经设了一个\(F(n) = \sum_{d|n}f(d)\),那么由莫比乌斯反演可以得到\(f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})\)。
然后卷积可以看出卷一个\(I\)比较好,则:\((f*g)(n)=\sum_{i=1}^nF(i)-\sum_{i=2}^nS(\lfloor\frac{n}{i}\rfloor)\)。显然\(F(i)\)前缀可以通过平方和公式等推出来。那么直接递归做即可。
代码:
#include<map>
#include<set>
#include<cmath>
#include<cstdio>
#include<stack>
#include<ctime>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 1e6 + 5;
const ll MOD = 1e9 + 7;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
int mu[maxn], vis[maxn];
int prime[maxn], cnt;
ll sum[maxn];
ll F(ll x){
return (1LL * x * x - 3 * x + 2) % MOD;
}
void getmu(int n){
memset(vis, 0, sizeof(vis));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0){
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i <= n; i++){
for(int j = i; j <= n; j += i){
sum[j] = (sum[j] + mu[i] * F(j / i)) % MOD;
}
sum[i] = (sum[i] + sum[i - 1]) % MOD;
}
}
int N = 1e6;
map<int, ll> mm;
ll ksc(ll a, ll b, ll p){
ll t = a * b - (ll)((long double)a * b / p + 0.5) * p;
return (t < 0)? t + p : t;
}
ll inv6 = 166666668, inv2 = 500000004;
ll solve(ll n){
if(n <= N) return sum[n];
if(mm.find(n) != mm.end()) return mm[n];
ll ans = ksc(ksc(n, n + 1, MOD), 2 * n + 1, MOD) * inv6 % MOD;
ans = (ans - ksc(n, n + 1, MOD) * inv2 % MOD * 3) % MOD;
ans += 2LL * n;
ans %= MOD;
for(int l = 2, r; l <= n; l = r + 1){
r = n / (n / l);
ans -= 1LL * (r - l + 1) * solve(n / l);
ans %= MOD;
}
return mm[n] = ans;
}
ll ppow(ll a, ll b, ll p){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a % p;
a = a * a % p;
b >>= 1;
}
return ret;
}
int main(){
int T;
getmu(N);
// printf("* %lld\n", sum[N + 1]);
scanf("%d", &T);
mm.clear();
while(T--){
ll n;
scanf("%lld", &n);
printf("%lld\n", (solve(n) + MOD) % MOD);
}
return 0;
}
HDU 5608 function(莫比乌斯反演 + 杜教筛)题解的更多相关文章
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛
题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- 牛客练习赛84F-牛客推荐系统开发之下班【莫比乌斯反演,杜教筛】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11174/F 题目大意 给出\(n,k\)求 \[\sum_{i_1=1}^n\sum_{i_2=1}^n.. ...
随机推荐
- POJ1629:picnic planning
题目描述 矮人虽小却喜欢乘坐巨大的轿车,轿车大到可以装下无论多少矮人.某天,N(N≤20)个矮人打算到野外聚餐.为了 集中到聚餐地点,矮人A 有以下两种选择 1)开车到矮人B家中,留下自己的轿车在矮人 ...
- es_python_操作
获取es索引 https://www.itranslater.com/qa/details/2583886977221264384
- Docker部署SayHello(FastAPI)
目录 前言 服务部署 部署后端 1. 进入到sayhello目录 2. 编写API的Dockerfile(如果有请之直接构建镜像- 在下一步) 3. 构建镜像 4. 运行容器 5. 访问IP:8000 ...
- RVA与FOA的转换
主要取决于文件对齐与内存对齐的值
- Oracle 0至6级锁的通俗解释及实验案例_ITPUB博客 http://blog.itpub.net/30126024/viewspace-2156232/
Oracle 0至6级锁的通俗解释及实验案例_ITPUB博客 http://blog.itpub.net/30126024/viewspace-2156232/
- Git提交代码规范 而且规范的Git提交历史,还可以直接生成项目发版的CHANGELOG(semantic-release)
Git提交代码规范 - 木之子梦之蝶 - 博客园 https://www.cnblogs.com/liumengdie/p/7885210.html Commit message 的格式 Git 每次 ...
- 【译】.NET 5. 0 中 Windows Form 的新特性
自从 Windows Form 在 2018 年底开源并移植到 .NET Core 以来,团队和我们的外部贡献者都在忙于修复旧的漏洞和添加新功能.在这篇文章中,我们将讨论 .NET 5.0 中 Win ...
- 单体架构、SOA架构、微服务架构
- DNS欺骗&嗅探监听
承接上一章,除了arp欺骗之外对的欺骗方法 a)使用kali,对dns文件进行编辑 使用的欺骗工具是ettercap.对dns文件编辑: 添加一个A记录,解释到kali自身: b)进行欺骗 通过命令行 ...
- Go语言学习-main和init
main 函数和 init 函数Go里面有两个保留的函数: init 函数(能够应用于所有的 package )和 main 函数(只能应用于 package main ).这两个函数在定义时不能有任 ...