来源:https://www.jianshu.com/p/c02a1fbffad6

简单易懂的softmax交叉熵损失函数求导

来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~

softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。

softmax 函数

softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任务的输出层。其实可以认为softmax输出的是几个类别选择的概率,比如我有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。

softmax函数的公式是这种形式:

S_i代表的是第i个神经元的输出。

ok,其实就是在输出后面套一个这个函数,在推导之前,我们统一一下网络中的各个表示符号,避免后面突然出现一个什么符号懵逼推导不下去了。

首先是神经元的输出,一个神经元如下图:

神经元的输出设为:

其中w_{ij}是第i个神经元的第j个权重,b是偏移值。z_i表示该网络的第i个输出。

给这个输出加上一个softmax函数,那就变成了这样:

a_i代表softmax的第i个输出值,右侧就是套用了softmax函数。

损失函数 loss function

在神经网络反向传播中,要求一个损失函数,这个损失函数其实表示的是真实值与网络的估计值的误差,知道误差了,才能知道怎样去修改网络中的权重。

损失函数可以有很多形式,这里用的是交叉熵函数,主要是由于这个求导结果比较简单,易于计算,并且交叉熵解决某些损失函数学习缓慢的问题。交叉熵的函数是这样的:

其中y_i表示真实的分类结果。

到这里可能嵌套了好几层,不过不要担心,下面会一步步推导,强烈推荐在纸上写一写,有时候光看看着看着就迷糊了,自己边看边推导更有利于理解~

最后的准备

在我最开始看softmax推导的时候,有时候看到一半不知道是怎么推出来的,其实主要是因为一些求导法则忘记了,唉~

所以这里把基础的求导法则和公式贴出来~有些忘记的朋友可以先大概看一下:

推导过程

好了,这下正式开始~

首先,我们要明确一下我们要求什么,我们要求的是我们的loss对于神经元输出(z_i)的梯度,即:

根据复合函数求导法则:

有个人可能有疑问了,这里为什么是a_j而不是a_i,这里要看一下softmax的公式了,因为softmax公式的特性,它的分母包含了所有神经元的输出,所以,对于不等于i的其他输出里面,也包含着z_i,所有的a都要纳入到计算范围中,并且后面的计算可以看到需要分为i = j和i ≠ j两种情况求导。

下面我们一个一个推:

第二个稍微复杂一点,我们先把它分为两种情况:

如果i=j:

如果i≠j:

ok,接下来我们只需要把上面的组合起来:

最后的结果看起来简单了很多,最后,针对分类问题,我们给定的结果y_i最终只会有一个类别是1,其他类别都是0,因此,对于分类问题,这个梯度等于:

来源:https://www.jianshu.com/p/c02a1fbffad6

softmax交叉熵损失函数求导的更多相关文章

  1. 简单易懂的softmax交叉熵损失函数求导

    参考: https://blog.csdn.net/qian99/article/details/78046329

  2. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  3. 深度学习原理与框架-神经网络结构与原理 1.得分函数 2.SVM损失函数 3.正则化惩罚项 4.softmax交叉熵损失函数 5. 最优化问题(前向传播) 6.batch_size(批量更新权重参数) 7.反向传播

    神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, ...

  4. softmax+交叉熵

    1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0 ...

  5. [ch03-02] 交叉熵损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...

  6. 关于交叉熵损失函数Cross Entropy Loss

    1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个 ...

  7. 深度学习面试题07:sigmod交叉熵、softmax交叉熵

    目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只 ...

  8. 深度学习:Sigmoid函数与损失函数求导

    1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 ...

  9. softmax 损失函数求导过程

    前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...

随机推荐

  1. PHP 开发工程师基础篇 - PHP 字符串

    字符串 (String) 字符串是一系列字符的集合.如 “abc”. 在 PHP 中,一个字符代表一个字节,一个字节 (Byte) 有 8 比特 (bit). PHP 仅支持 256 字符集,因此 P ...

  2. 【AHOI 2015】 小岛 - 最短路

    描述 西伯利亚北部的寒地,坐落着由 N 个小岛组成的岛屿群,我们把这些小岛依次编号为 1 到 N . 起初,岛屿之间没有任何的航线.后来随着交通的发展,逐渐出现了一些连通两座小岛的航线.例如增加一条在 ...

  3. Java继承后访问成员的特点

    继承后的特点--成员变量 对象访问成员变量时,会先在子类中查找有没有定义对应的变量,若子类中存在就会就近使用子类中的变量,若子类中没有定义就会沿着继承关系往上找有没有定义相应的变量,若父类中也没有则编 ...

  4. Jmeter 常用函数(20)- 详解 __counter

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 计数器,跟配置元件里面的计数器作用类似哦 ...

  5. HDFS概述和Shell操作

    大数据技术之Hadoop(HDFS) 第一章 HDFS概述 HDFS组成架构 HDFS文件块大小 第二章 HDFS的Shell操作(开发重点) 1.基本语法 bin/hadoop fs 具体命令    ...

  6. Project ACRN documentation

    Project ACRN documentation https://projectacrn.github.io/latest/index.html Virtio devices high-level ...

  7. Open vSwitch with DPDK

    http://docs.openvswitch.org/en/latest/intro/install/dpdk/

  8. [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).

    Linux下安装MySQL执行scripts/mysql_install_db --user=mysql脚本时,报错如下: Filling help tables...2019-12-24 16:46 ...

  9. PyTorch学习笔记及问题处理

    1.torch.nn.state_dict(): 返回一个字典,保存着module的所有状态(state). parameters和persistent_buffers都会包含在字典中,字典的key就 ...

  10. 关闭jetbrains ide support 正在调试此浏览器提示

    1 安装JetBrains IDE Support插件 插件地址 2 启用插件 3 设置访问端口 4 WebStorm中设置Live Edit 5 关闭"JetBrains IDE Supp ...