非确定性有穷状态决策自动机练习题Vol.3 D. Dp搬运工3
非确定性有穷状态决策自动机练习题Vol.3 D. Dp搬运工3
题目描述
给定两个长度为 \(n\) 的排列,定义 \(magic(A,B)=∑_{i=1}^nmax(Ai,Bi)\) 。
现在给定 \(n\),\(K\) 问有多少对 \((A,B)\) 满足 \(magic(A,B)≥K\)。
分析
首先转化一下,我们固定排列 \(B\) 为 $1∼n $,最后答案乘个 \(n!\) 就好了
我们设 \(f[i][j][k]\) 为 考虑到第 \(i\) 个位置,\(i\) 之前有 \(j\) 个位置没有填,当前产生的价值为 \(k\) 的方案数
我们可以选择在 \(i\) 的位置不填数,此时直接转移即可
\(f[i][j+1][k]=f[i][j+1][k]+f[i-1][j][k]\)
我们可以把当前的 \(i\) 插入到之前没有填过的 \(j\) 个位置或者从之前没有用过的 \(j\) 个数中选择一个填到 \(i\) 所在的位置,还可以把数字 \(i\) 填入 \(i\) 的位置
此时的转移方程为
\(f[i][j][k+i]=f[i][j][k+i]+f[i-1][j][k] \times (j \times 2+1)\)
我们还可以既把当前的 \(i\) 插入到之前没有填过的 \(j\) 个位置又从之前没有用过的 \(j\) 个数中选择一个填到 \(i\) 所在的位置,此时
\(f[i][j-1][k+i+i]=f[i][j-1][k+i+i]+f[i-1][j][k] \times j \times j\)
代码
#include<cstdio>
#include<algorithm>
const int maxn=55;
const int mod=998244353;
long long f[maxn][maxn][maxn*maxn];
int n,k;
int main(){
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
scanf("%d%d",&n,&k);
f[1][0][1]=f[1][1][0]=1;
for(int i=2;i<=n;i++){
int maxj=std::min(i-1,n-i+1);
int maxk=i*i;
for(int j=0;j<=maxj;j++){
for(int k=0;k<=maxk;k++){
if(f[i-1][j][k]){
f[i][j+1][k]=(f[i][j+1][k]+f[i-1][j][k])%mod;
f[i][j][k+i]=(f[i][j][k+i]+f[i-1][j][k]*(j*2LL+1))%mod;
if(j) f[i][j-1][k+i+i]=(f[i][j-1][k+i+i]+f[i-1][j][k]*j*j*1LL)%mod;
}
}
}
}
long long ans=0;
for(int i=k;i<=n*n;i++){
ans=(ans+f[n][0][i])%mod;
}
for(int i=2;i<=n;i++){
ans=ans*1LL*i%mod;
}
printf("%lld\n",ans);
return 0;
}
非确定性有穷状态决策自动机练习题Vol.3 D. Dp搬运工3的更多相关文章
- 非确定性有穷状态决策自动机练习题Vol.1 A.扭动的回文串
非确定性有穷状态决策自动机练习题Vol.1 A.扭动的回文串 题目描述 \(JYY\)有两个长度均为\(N\)的字符串\(A\)和\(B\). 一个"扭动字符串\(S(i,j,k)\)由\( ...
- 非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭
非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭 题目描述 由于各种原因,桐人现在被困在\(Under World\)(以下简称\(UW\))中,而\(UW\)马上 要迎来最终的压力测试--魔界 ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解
前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解
前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...
- 水题大战Vol.3 B. DP搬运工2
水题大战Vol.3 B. DP搬运工2 题目描述 给你\(n,K\),求有多少个\(1\)到\(n\) 的排列,恰好有\(K\)个数\(i\) 满足\(a_{i-1},a_{i+1}\) 都小于\(a ...
- goroutine 分析 协程的调度和执行顺序 并发写 run in the same address space 内存地址 闭包 存在两种并发 确定性 非确定性的 Go 的协程和通道理所当然的支持确定性的并发方式(
package main import ( "fmt" "runtime" "sync" ) const N = 26 func main( ...
- AC自动机练习题1:地图匹配
AC自动机板子,学习之前要是忘记了就看一下 1465: [AC自动机]地图匹配 poj1204 时间限制: 1 Sec 内存限制: 256 MB提交: 78 解决: 46[提交] [状态] [讨论 ...
- Vue兄弟组件(非父子组件)状态共享与传值
前言:网上大部分文章写的有点乱,很少有讲得易懂的文章. 所以,我写了篇在我能看得懂的基础上又照顾到大家的文章 =.= 作者:X1aoYE 备注:此文原创,转载请注明~ 内容里的<br> ...
- 非确定性计算引擎转化为C#版本并重构
这是之前我写的原始的 VB.NET 版本: http://www.cnblogs.com/RChen/archive/2010/05/17/1737587.html 转化为 C# 版本后,还进行了一些 ...
随机推荐
- 坚果云如何使用二次验证码/谷歌身份验证器/两步验证/虚拟MFA?
一般步骤:登陆后点邮箱名——安全设置——开通两步验证,用二次验证码微信小程序绑定即可 具体步骤见链接 坚果云如何使用二次验证码/谷歌身份验证器/两步验证/虚拟MFA? 二次验证码小程序于谷歌身份验证 ...
- python-元类和使用元类实现简单的ORM
元类 面向对象中,对象是类的实例,即对象是通过类创建出来的,在python中,一切皆对象,同样,类也是一个对象,叫做类对象,只是这个类对象拥有创建其子对象(实例对象)的能力.既然类是对象,那么类是通过 ...
- Druid 连接池
记录Druid 连接池简单用法 package Utils; import com.alibaba.druid.pool.DruidDataSourceFactory; import javax.sq ...
- 深入探究JVM之垃圾回收算法实现细节
@ 目录 前言 垃圾回收算法实现细节 根节点枚举 安全点 安全区域 记忆集和卡表 写屏障 并发的可达性分析 低延迟GC Shenandoah ZGC 总结 前言 本篇紧接上文,主要讲解垃圾回收算法的实 ...
- 搭建vue项目的步骤
新建vue脚手架 vue-element-cms步骤: 1. vue create ……………(文件名)---这里取为vue-element-cms 2. 命令行工具进入这个文件夹,安装路由依赖包 n ...
- 数字转字符串&&字符串转数字
一开始写错了呜呜呜 先是<< 再是>>
- 线程_FIFO队列实现生产者消费者
import threading # 导入线程库 import time from queue import Queue # 队列 class Producer(threading.Thread): ...
- Django创建简单数据库
在 创建好的 app 目录下的 models.py 中,编写创建 数据库表的限制条件 class Student(models.Model): s_name = models.CharField(ma ...
- MediaDevices对象
mediaDevices 是 Navigator对象的一个 只读属性,返回一个 MediaDevices 对象,该对象可提供对相机和麦克风等媒体输入设备的连接访问,也包括屏幕共享. 语法 const ...
- AGC 043 C - Giant Graph SG函数 dp 贪心
LINK:Giant Graph 神仙题目. 容易发现在图中选择某个点的贡献为\(10^{18\cdot(x+y+z)}\) 这等价于多选一个点多大一点就多乘了一个\(10^{18}\) 所以显然是贪 ...