原文链接:Kubernetes编写自定义controller

来自kubernetes官方github的一张图:

如图所示,图中的组件分为client-go和custom controller两部分:

  1. client-go部分

    • Reflector: 监视特定资源的k8s api, 把新监测的对象放入Delta Fifo队列,完成此操作的函数是ListAndWatch。
    • Informer: 从Delta Fifo队列拿出对象,完成此操作的函数是processLoop。
    • Indexer: 提供线程级别安全来存储对象和key。
  2. custom-controller部分

    • Informer reference: Informer对象引用
    • Indexer reference: Indexer对象引用
    • Resource Event Handlers: 被Informer调用的回调函数,这些函数的作用通常是获取对象的key,并把key放入Work queue,以进一步做处理。
    • Work queue: 工作队列,用于将对象的交付与其处理分离,编写Resource event handler functions以提取传递的对象的key并将其添加到工作队列。
    • Process Item: 用于处理Work queue中的对象,可以有一个或多个其他函数一起处理;这些函数通常使用Indexer reference或Listing wrapper来检索与该键对应的对象。

client-go官方代码例子

package main

import (
"flag"
"fmt"
"time" "k8s.io/klog" "k8s.io/api/core/v1"
meta_v1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/tools/cache"
"k8s.io/client-go/tools/clientcmd"
"k8s.io/client-go/util/workqueue"
) // 定义一个结构体Controller
type Controller struct {
indexer cache.Indexer
queue workqueue.RateLimitingInterface
informer cache.Controller
} // 获取controller的函数
func NewController(queue workqueue.RateLimitingInterface, indexer cache.Indexer, informer cache.Controller) *Controller {
return &Controller{
informer: informer,
indexer: indexer,
queue: queue,
}
} // 处理workqueue中的对象
func (c *Controller) processNextItem() bool {
// Wait until there is a new item in the working queue
key, quit := c.queue.Get()
if quit {
return false
}
// Tell the queue that we are done with processing this key. This unblocks the key for other workers
// This allows safe parallel processing because two pods with the same key are never processed in
// parallel.
defer c.queue.Done(key) // Invoke the method containing the business logic
err := c.syncToStdout(key.(string))
// Handle the error if something went wrong during the execution of the business logic
c.handleErr(err, key)
return true
} // syncToStdout is the business logic of the controller. In this controller it simply prints
// information about the pod to stdout. In case an error happened, it has to simply return the error.
// The retry logic should not be part of the business logic.
func (c *Controller) syncToStdout(key string) error {
obj, exists, err := c.indexer.GetByKey(key)
if err != nil { klog.Errorf("Fetching object with key %s from store failed with %v", key, err)
return err
} if !exists { // Below we will warm up our cache with a Pod, so that we will see a delete for one pod
fmt.Printf("Pod %s does not exist anymore\n", key)
} else {
// Note that you also have to check the uid if you have a local controlled resource, which
// is dependent on the actual instance, to detect that a Pod was recreated with the same name
fmt.Printf("Sync/Add/Update for Pod %s\n", obj.(*v1.Pod).GetName())
}
return nil
} // handleErr checks if an error happened and makes sure we will retry later.
func (c *Controller) handleErr(err error, key interface{}) {
if err == nil {
// Forget about the #AddRateLimited history of the key on every successful synchronization.
// This ensures that future processing of updates for this key is not delayed because of
// an outdated error history.
c.queue.Forget(key)
return
} // This controller retries 5 times if something goes wrong. After that, it stops trying.
if c.queue.NumRequeues(key) < {
klog.Infof("Error syncing pod %v: %v", key, err) // Re-enqueue the key rate limited. Based on the rate limiter on the
// queue and the re-enqueue history, the key will be processed later again.
c.queue.AddRateLimited(key)
return
} c.queue.Forget(key)
// Report to an external entity that, even after several retries, we could not successfully process this key
runtime.HandleError(err)
klog.Infof("Dropping pod %q out of the queue: %v", key, err)
} func (c *Controller) Run(threadiness int, stopCh chan struct{}) {
defer runtime.HandleCrash() // Let the workers stop when we are done
defer c.queue.ShutDown()
klog.Info("Starting Pod controller") go c.informer.Run(stopCh) // Wait for all involved caches to be synced, before processing items from the queue is started
if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) { runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))
return
} for i := ; i < threadiness; i++ {
go wait.Until(c.runWorker, time.Second, stopCh)
} <-stopCh
klog.Info("Stopping Pod controller")
} func (c *Controller) runWorker() {
for c.processNextItem() {
}
} func main() {
var kubeconfig string
var master string // 指定kubeconfig文件
flag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")
flag.StringVar(&master, "master", "", "master url")
flag.Parse() // creates the connection
config, err := clientcmd.BuildConfigFromFlags(master, kubeconfig)
if err != nil { klog.Fatal(err)
} // creates the clientset
clientset, err := kubernetes.NewForConfig(config)
if err != nil { klog.Fatal(err)
} // create the pod watcher
podListWatcher := cache.NewListWatchFromClient(clientset.CoreV1().RESTClient(), "pods", v1.NamespaceDefault, fields.Everything()) // create the workqueue
queue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter()) // Bind the workqueue to a cache with the help of an informer. This way we make sure that
// whenever the cache is updated, the pod key is added to the workqueue.
// Note that when we finally process the item from the workqueue, we might see a newer version
// of the Pod than the version which was responsible for triggering the update.
indexer, informer := cache.NewIndexerInformer(podListWatcher, &v1.Pod{}, , cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
key, err := cache.MetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
UpdateFunc: func(old interface{}, new interface{}) {
key, err := cache.MetaNamespaceKeyFunc(new)
if err == nil {
queue.Add(key)
}
},
DeleteFunc: func(obj interface{}) {
// IndexerInformer uses a delta queue, therefore for deletes we have to use this
// key function.
key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
}, cache.Indexers{}) controller := NewController(queue, indexer, informer) // We can now warm up the cache for initial synchronization.
// Let's suppose that we knew about a pod "mypod" on our last run, therefore add it to the cache. // If this pod is not there anymore, the controller will be notified about the removal after the // cache has synchronized. indexer.Add(&v1.Pod{ ObjectMeta: meta_v1.ObjectMeta{ Name: "mypod", Namespace: v1.NamespaceDefault, }, }) // Now let's start the controller
stop := make(chan struct{})
defer close(stop)
go controller.Run(, stop) // Wait forever
select {}
}

Kubernetes 编写自定义 controller的更多相关文章

  1. k8s自定义controller设计与实现

    k8s自定义controller设计与实现 创建CRD 登录可以执行kubectl命令的机器,创建student.yaml apiVersion: apiextensions.k8s.io/v1bet ...

  2. 用mel编写自定义节点的属性编辑器界面

    用mel编写自定义节点的属性编辑器界面比较麻烦,而且网上例子又少,下面给出一个范例,说明基本的格式 // 初始化节点时调用 global proc initControl(string $attrNa ...

  3. MVC自定义过滤器,自定义Area过滤器,自定义Controller,Action甚至是ViewData过滤器

    实现MVC自定义过滤器,自定义Area过滤器,自定义Controller,Action甚至是ViewData过滤器 MVC开发中几种以AOP方式实现的Filters是非常好用的,默认情况下,我们通过A ...

  4. django “如何”系列4:如何编写自定义模板标签和过滤器

    django的模板系统自带了一系列的内建标签和过滤器,一般情况下可以满足你的要求,如果觉得需更精准的模板标签或者过滤器,你可以自己编写模板标签和过滤器,然后使用{% load %}标签使用他们. 代码 ...

  5. RobotFramework自动化测试框架-使用Python编写自定义的RobotFramework Lib

    使用Python构建Lib工程 可以用来开发Python Lib的IDE工具有很多,常见的有Pycharm,Eclipse with PyDev插件等,而且在RobotFramework官网中也已经提 ...

  6. SpringBoot编写自定义的starter 专题

    What’s in a name All official starters follow a similar naming pattern; spring-boot-starter-*, where ...

  7. kubernetes nginx ingress controller部署

    Kubernetes nginx ingress controller部署 1.下载kubernetes nginx的yaml文件 Wget https://raw.githubusercontent ...

  8. SpringBoot编写自定义配置信息

    ⒈编写自定义配置类 1.浏览器配置 package cn.coreqi.security.properties; public class BrowserProperties { private St ...

  9. R语言-编写自定义函数 ZZ

    一.函数构造器 每一个R函数都包括三个部分:函数名,程序主体以及参数集合,在编写自定义R函数时,需要将三个部分各自储存在一个R对象中.这里需要使用function函数,形如: my_function& ...

随机推荐

  1. 2020想学习JAVA的同学看过来,最基础的编程CRUD你会了没?

    一 JDBC简介 Java DataBase Connectivity Java语言连接数据库 官方(Sun公司)定义的一套操作所有关系型数据库的规则(接口) 各个数据库厂商去实现这套接口 提供数据库 ...

  2. time strptime()方法 时间操作

    Python time strptime()方法 时间操作   描述 Python time strptime() 函数根据指定的格式把一个时间字符串解析为时间元组. 语法 strptime()方法语 ...

  3. 一分钟玩转 Spring IoC

    前言 「上一篇文章」我们对 Spring 有了初步的认识,而 Spring 全家桶中几乎所有组件都是依赖于 IoC 的. 刚开始听到 IoC,会觉得特别高大上,但其实掰开了很简单. 跟着我的脚步,一文 ...

  4. Day13_商品详情及静态化

    学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"乐优商城"获取视频和教程资料! b站在线视频 0.学习 ...

  5. 了不起的Node.js 5/16

    Chapter 1 安装 1.Node.js的设计理念之一,只维护较少量的依赖,这使得安装node.js变得非常简单. 2.执行文件console.log没问题,但是node执行http静态服务器的时 ...

  6. PHP curl_share_close函数

    (PHP 5 >= 5.5.0) curl_share_close — 关闭 cURL 共享句柄 说明 void curl_share_close ( resource $sh ) 关闭 cUR ...

  7. luogu P4724 模板 三维凸包

    LINK:三维凸包 一个非常古老的知识点.估计也没啥用. 大体上了解了过程 能背下来就背下来吧. 一个bf:暴力枚举三个点 此时只需要判断所有的点都在这个面的另外一侧就可以说明这个面是三维凸包上的面了 ...

  8. Taurus.MVC 2.3.4 :WebAPI 文档集成测试功能升级:WebAPI批量自动化测试功能。

    前言: 最近升级了一下Taurus.MVC,现在最新版本是:Taurus.MVC 2.3.4,源码版本和nuget同步. 下面分三个步骤介绍下新版本的WebAPI批量自动化测试功能. 1.启用WebA ...

  9. MySQL索引结构原理分析

    我们在学习MySQL的时候经常会听到索引这个词,大概也知道这是什么,但是深究下去又说不出什么道道来.下面将会比较全面的介绍一下关于索引! 1 索引是什么? 这里用百度百科的一句话来说,在关系数据库中, ...

  10. JS 仿京东放大镜

    css代码 body{ margin:; } .box { width: 1210px; position: relative; background-color: pink; margin: 0 a ...