整数的唯一分解定理:

\(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\),其中\({\displaystyle p_{1}<p_{2}<p_{3}<\cdots <p_{s}}\)而且 \(p_{i}\)是一个质数, \(a_{i}\in \mathbb {Z} ^{+}\)(摘自维基百科)

欧拉筛通过使每个整数只会被它的最小质因子筛到来保证时间复杂度,可以用来筛质数。同时,利用这个性质可以在线性时间内筛出很多积性函数。


筛质数

for (int i = 2; i <= n; ++i)
{
if (!vis[i])
pri[++cnt] = i;
for (int j = 1; j <= cnt && pri[j] * i <= n; ++j)
{
vis[i * pri[j]] = 1;
if (i % pri[j] == 0)
break;
}
}

求欧拉函数\(\varphi\)

欧拉函数为1~n中和n互质的数的个数

所以如果\(n=p^k\), \(p\)是质数,那么\(\varphi(n)=\varphi(p^k)=p^k - p^{k-1}=p^{k-1}(p-1)=p^{k-1}\varphi(p)=p\ \varphi(p^{k-1})\)

结论很显然,因为除了\(p\)的倍数外,其他数都和\(n\)互质

所以在欧拉筛的时候,如果\(i\)是素数,那么\(\varphi(i)=i-1\)

如果\(i \bmod pri[j]==0\),也就是说\(pri[j]\)在\(i * phi[j]\)中出现了至少两次,那么\(\varphi(i * pri[j])=pri[j]*\varphi(i)\)

而如果\(i \bmod pri[j]!=0\),也就是\(phi[j]\)在\(i * phi[j]\)中第一次出现,那么\(gcd(i, phi[j])==1\),因为\(\varphi\)是积性函数,所以\(\varphi(i * pri[j])=\varphi(pri[j])*\varphi(i)\)

for (int i = 2; i <= n; ++i)
{
if (!vis[i])
pri[++cnt] = i,
phi[i] = i - 1;
for (int j = 1; j <= cnt && pri[j] * i <= n; ++j)
{
vis[i * pri[j]] = 1;
if (i % pri[j])
phi[i * pri[j]] = phi[i] * phi[pri[j]];
else
{
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
}
}

求莫比乌斯函数\(\mu\)

\(\mu (n)={\begin{cases}1 \qquad\quad (n=1)\\(-1)^{s}\quad (n无平方因子,s为素因子个数)\\0\qquad\quad else\\\end{cases}}\)

然后就,照着定义来行了

for (int i = 2; i <= n; ++i)
{
if (!vis[i])
pri[++cnt] = i,
mu[i] = -1;
for (int j = 1; j <= cnt && pri[j] * i <= n; ++j)
{
vis[i * pri[j]] = 1;
if (i % pri[j])
mu[i * pri[j]] = -mu[i];
else
break;
}
}

求约数个数\(\sigma_0/d\)

\(d(n)=\sum\limits_{i=1}^s{(a_i+1)}\), 另定义\(f(n)=a_1\)\(\quad(a、s定义见上文)\)

和欧拉函数类似。 如果\(i\)是素数,那么\(d(i)=2,f(i)=1\)

如果\(i \bmod pri[j]==0\),也就是说\(pri[j]\)在\(i * phi[j]\)中出现了至少两次,那么\(f(i * pri[j])=f(i)+1,d(i*pri[j])=d(i)/(f(i)+1)*(f(i)+2)\)\(\quad(消去pri[j]对i的影响,乘上pri[j]对i *pri[j]的影响)\)

而如果\(i \bmod pri[j]!=0\),也就是\(phi[j]\)在\(i * phi[j]\)中第一次出现,那么\(gcd(i, phi[j])==1\),因为\(d\)是积性函数,所以\(d(i * pri[j])=d(pri[j])*d(i)\)

for (int i = 2; i <= n; ++i)
{
if (!vis[i])
pri[++cnt] = i,
f[i] = 1,
d[i] = 2;
for (int j = 1; j <= cnt && pri[j] * i <= n; ++j)
{
vis[i * pri[j]] = 1;
if (i % pri[j])
f[i * pri[j]] = 1, d[i * pri[j]] = d[i] * d[pri[j]];
else
{
f[i * pri[j]] = f[i] + 1;
d[i * pri[j]] = d[i] / (f[i] + 1)* (f[i] + 2);
break;
}
}
}

noip复习——线性筛(欧拉筛)的更多相关文章

  1. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

  2. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

  3. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  4. POJ2909_Goldbach's Conjecture(线性欧拉筛)

    Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...

  5. 欧拉筛(线性筛) & 洛谷 P3383 【模板】线性筛素数

    嗯.... 埃氏筛和欧拉筛的思想都是相似的: 如果一个数是素数,那么它的所有倍数都不是素数.... 这里主要介绍一下欧拉筛的思路:(欧拉筛的复杂度大约在O(n)左右... 定义一个prime数组,这个 ...

  6. 埃氏筛优化(速度堪比欧拉筛) + 洛谷 P3383 线性筛素数 题解

    我们一般写的埃氏筛消耗的时间都是欧拉筛的三倍,但是欧拉筛并不好想(对于我这种蒟蒻) 虽然 -- 我 -- 也可以背过模板,但是写个不会的欧拉筛不如写个简单易懂的埃氏筛 于是就有了优化 这个优化还是比较 ...

  7. 欧拉筛 线性筛 素数+莫比乌斯的mu[]

    https://blog.csdn.net/qq_39763472/article/details/82428602 模板来自https://blog.csdn.net/Avalon_cc/artic ...

  8. POJ-3126.PrimePath(欧拉筛素数打表 + BFS)

    给出一篇有关素数线性筛和区间筛的博客,有兴趣的读者可以自取. 本题大意: 给定两个四位的素数,没有前导零,每次变换其中的一位,最终使得两个素数相等,输出最小变换次数.要求变换过程中的数也都是素数. 本 ...

  9. POJ3090 Visible Lattice Points 欧拉筛

    题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...

随机推荐

  1. 【C#】根据开始时间和结束时间筛选存在的信息

    背景 业务需求中,需要根绝开始时间和结束时间筛选一段时间内的任务存在个数. 示例图片 根据开始时间 9:00到 结束时间11:00 筛选信息 总共有这么四种情况可能出现 插入测试数据 CREATE T ...

  2. MSF查找提权exp

    0x01:介绍 在拿到一个反弹shell后,下一步可以用metaspolit的内置模块Local Exploit SuggesterLocal-exploit-suggester的功能就如它的名字一样 ...

  3. socket链接

    服务端: package com.batch.service.impl; import java.io.BufferedReader; import java.io.BufferedWriter; i ...

  4. vue学习(十六) 自定义私有过滤器 ES6字符串新方法 填充字符串

    <div id="app"> <p>{{data | formatStr('yyyy-MM-dd')}}</p></div> //s ...

  5. ZYNQ PS端IIC接口使用-笔记

    ZYNQ7000系列FPGA的PS自带两个IIC接口,接口PIN IO可扩展为EMIO形式即将IO约束到PL端符合电平标准的IO(BANK12.BANK13.BANK34.BANK35): SDK中需 ...

  6. C++的vector的使用方法

    vector c++的vector的使用方法,创建,初始化,插入,删除等. #include "ex_vector.h" #include <iostream> #in ...

  7. PHP cal_info() 函数

    ------------恢复内容开始------------ 实例 返回格利高里历法的信息: <?phpprint_r(cal_info(0));?> 运行实例 » 定义和用法 cal_i ...

  8. 二维线段树->树套树

    现在上真正的二维线段树 毕竟 刚刚那个是卡常 过题我们现在做一个更高级的做法二维线段树. 大体上维护一颗x轴线段树 然后在每个节点的下方再吊一颗维护y轴的线段树那么此时我们整个平面就被我们玩好了. 这 ...

  9. React Hook~部分实用钩子

    useCompareEffect /** * useCompareEffect * useEffect只是普通的浅比较,这里做了深比较 * useEffect的依赖是否相同,相同不触发 */ impo ...

  10. Jenkins总结1-部署jenkins

    1. 介绍 jenkins是一个广泛用于持续构建的可视化web工具,持续构建说得更直白点,就是各种项目的"自动化"编译.打包.分发部署.jenkins可以很好的支持各种语言(比如: ...