Roman Roulette

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 286    Accepted Submission(s): 105

Problem Description
The historian Flavius Josephus relates how, in the Romano-Jewish conflict of 67 A.D., the Romans took the town of Jotapata which he was commanding. Escaping, Jospehus found himself trapped in a cave with 40 companions. The Romans discovered his whereabouts and invited him to surrender, but his companions refused to allow him to do so. He therefore suggested that they kill each other, one by one, the order to be decided by lot. Tradition has it that the means for effecting the lot was to stand in a circle, and, beginning at some point, count round, every third person being killed in turn. The sole survivor of this process was Josephus, who then surrendered to the Romans. Which begs the question: had Josephus previously practised quietly with 41 stones in a dark corner, or had he calculated mathematically that he should adopt the 31st position in order to survive?

Having read an account of this gruesome event you become obsessed with the fear that you will find yourself in a similar situation at some time in the future. In order to prepare yourself for such an eventuality you decide to write a program to run on your hand-held PC which will determine the position that the counting process should start in order to ensure that you will be the sole survivor.

In particular, your program should be able to handle the following variation of the processes described by Josephus. n > 0 people are initially arranged in a circle, facing inwards, and numbered from 1 to n. The numbering from 1 to n proceeds consecutively in a clockwise direction. Your allocated number is 1. Starting with person number i, counting starts in a clockwise direction, until we get to person number k (k > 0), who is promptly killed. We then proceed to count a further k people in a clockwise direction, starting with the person immediately to the left of the victim. The person number k so selected has the job of burying the victim, and then returning to the position in the circle that the victim had previously occupied. Counting then proceeeds from the person to his immediate left, with the kth person being killed, and so on, until only one person remains.

For example, when n = 5, and k = 2, and i = 1, the order of execution is 2, 5, 3, and 1. The survivor is 4.

 
Input
Your program must read input lines containing values for n and k (in that order), and for each input line output the number of the person with which the counting should begin in order to ensure that you are the sole survivor. For example, in the above case the safe starting position is 3. Input will be terminated by a line containing values of 0 for n and k.

Your program may assume a maximum of 100 people taking part in this event.

 
Sample Input
1 1
1 5
0 0
 
Sample Output
1 1
题解:

历史学家弗拉维·约瑟夫曾讲述过这样的故事:在公元前67年的罗马犹太战争中,罗马攻下了他掌权的城市。随后,他与另外40个反抗战士一起逃到了一个山洞中而被困在里面。罗马人发现了他的下落并劝他投降,但他的战士们拒绝投降。于是他提议互相杀死对方,一个接一个,顺序由大家决定。有一种传统的方式,即为了公平起见所有人都站成一个环,从某一点开始,循环计数,每隔两个活着的人就杀掉一个。最后只有约瑟夫幸存了下来,投降了罗马。问题来了,约瑟夫如何知道一开始站第31位才会幸存到最后呢?是不是趁着洞穴黑暗大家没注意,悄悄地用41个石子演练过了?还是他用数学方法计算出了这个位置?

在仔细读过这个故事由来后,你逐渐克服了恐惧心理,不再害怕将来这种事会发生到你的头上。但为了应对这种类似的情况,你准备为你的手机写一个程序,以便快速的计算这个过程并确保你能站到最后幸存的位置上。

类似于约瑟夫所述的问题,你的程序需要处理如下改编过的问题。最初n(n > 0)个人面朝内围成一个环,并依次按顺时针编号1到n。你的编号为1,第一个轮到的人编号为i,同样顺时针方向开始计数,直到第k(k > 0)个人把他杀掉。然后再从下一个还活着的人开始向后数到第k个人,由这个人来把刚才杀掉的人埋葬,并站到被杀的人的位置上。然后再从他左面第一个还活着的人开始计数,杀掉第k个人,以此类推,直到只有一个人还活着。

比方说,n = 5,k = 2,i = 1,被杀的顺序应为:2、5、3和1。4幸存。

分析

类似于经典的约瑟夫环问题,这类问题都是可以用数学推导求出通式的。但这道题目的过程要远比约瑟夫环问题复杂得多,分析通式比较困难,且由于数据量很小(少于100人),可直接按模拟类型的题目对待求解。

模拟的实现使用动态数组是非常方便的,过程也很简单。数组初始存储每一个人的编号,从第0个元素(1号)开始计数,每次杀死一个人前先不要将这个人的编号删除,而是先找出要来埋他的人,将他们的编号互换,然后将埋他的人原来所在的位置删掉即可。最后计算出的是从1号开始计数,最后能幸存的人编号p,那么从你前面第p个人开始你就是安全的(你站在第1位),即n – p。这个换算的原理是显而易见的。

这个是找你前面第p个人开始你就是安全的;

由这个人来把刚才杀掉的人埋葬,并站到被杀的人的位置上

题解:

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<queue>
#define mem(x,y) memset(x,y,sizeof(x))
/*#define L tree[root].l
#define R tree[root].r
#define S tree[root].sum
#define NOW tree[root<<1].sum+tree[root<<1|1].sum
#define lson root<<1,l,mid
#define rson root<<1|1,mid+1,r*/
using namespace std;
const int INF=0x3f3f3f3f;
vector<int>vec;
int main(){
int n,k,flot=;
while(scanf("%d%d",&n,&k),n|k){
vec.clear();
for(int i=;i<=n;i++)
vec.push_back(i);
int pos=,kisp=(k-)%vec.size();
while(vec.size()>){
pos=(kisp-+k)%(vec.size()-);
pos=(pos+(pos>=kisp))%vec.size();
vec[kisp]=vec[pos];
vec.erase(vec.begin()+pos);
kisp=(kisp+k-(pos<kisp))%vec.size();
}
printf("%d\n",(n - vec.front() + ) % n + );
//printf("Case %d: %d\n",++flot,*vec.begin());
}
return ;
}

Roman Roulette(约瑟夫环模拟)的更多相关文章

  1. uva 133 The Dole Queue 双向约瑟夫环 模拟实现

    双向约瑟夫环. 数据规模只有20,模拟掉了.(其实公式我还是不太会推,有空得看看) 值得注意的是两个方向找值不是找到一个去掉一个,而是找到后同时去掉. 还有输出也很坑爹! 在这里不得不抱怨下Uva的o ...

  2. 10行Python代码解决约瑟夫环(模拟)

    http://blog.csdn.net/dengyaolongacmblog/article/details/39208675 #!/usr/bin/env python # coding: utf ...

  3. 约瑟夫环(Josehpuse)的模拟

    约瑟夫环问题: 0,1,...,n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字,求出这个圆圈里剩下的最后一个数字. 这里给出以下几种解法, 1.用队列模拟 每次将前m-1个元 ...

  4. hdu 4841 圆桌问题(用vector模拟约瑟夫环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4841 圆桌问题 Time Limit: 3000/1000 MS (Java/Others)    M ...

  5. UVa 130 - Roman Roulette

    模拟约瑟夫环  Roman Roulette  The historian Flavius Josephus relates how, in the Romano-Jewish conflict  o ...

  6. tc 147 2 PeopleCircle(再见约瑟夫环)

    SRM 147 2 600PeopleCircle Problem Statement There are numMales males and numFemales females arranged ...

  7. 14.约瑟夫环问题[JosephusProblem]

    [题目] n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后,从被删除数字的下一个继续删除 ...

  8. Java学习之约瑟夫环的两中处理方法

    package day_2; import java.util.Scanner; /** * @author Administrator * 约瑟夫环问题: 设编号为 1,2,3,....n的N个人围 ...

  9. 约瑟夫环问题及python与c++实现效率对比

    约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重 ...

随机推荐

  1. 将窗口置顶的方法:SetWindowPos、AttachThreadInput、SwitchToThisWindow

    将窗口置顶的方法:SetWindowPos.AttachThreadInput.SwitchToThisWindow [转]http://hi.baidu.com/neil_danky/item/f9 ...

  2. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  3. day6_python学习笔记_chapter8_条件,循环

    1. if elif else 2. 条件表达式:三元操作符: smaller = x if x < y else y   == if x < y : smaller =x  else : ...

  4. 汉化testlink

    testlink版本:1.9.13 1.登录testlink后,打开my setting(左上角小人人) 2.Locale 选择chinese,然后点击save 3.over,汉化完毕

  5. Ubuntu Server修改IP、DNS、hosts

    本文记录下Ubuntu Server 16.04修改IP.DNS.hosts的方法 -------- 1. Ubuntu Server 修改IP sudo vi /etc/network/interf ...

  6. java 键盘输入多种方法 .(转载)

    一.java不像C中拥有scanf这样功能强大的函数,大多是通过定义输入输出流对象.常用的类有BufferedReader,Scanner. 实例程序: 1.利用 Scanner 实现从键盘读入int ...

  7. php 接口示例

    php 接口示例: public function dev(){ $m=new Model('machine_info'); $ip=$_GET['ip']; echo $ip; //$arr=$m- ...

  8. ZOJ 38727(贪心)

    这道题真心坑.越想越远  想的飞起来了. 最后纠结起后缀表达式的定义来了. 题意: 就是给你一个串 ,  让你用最少改动次数来实它变成一个合法的后缀表达式,  改动方式有两种, 一种是直接加入数字或者 ...

  9. Codeforce 424C Magic Formulas 找规律

    题目链接:http://codeforces.com/contest/424/problem/C 题意:求Q值 思路:找规律 显然能够得到一个矩阵 把这个矩阵画出来就能发现一个横向的规律和一个主对角线 ...

  10. [cocos2dx笔记015]关于cocos2dx Button三种状态说明

    经过几天的填坑,最终将现有的项目由cocos2dx 2.2.2移到cocos2dx 3.2,差点放弃3.2了,但在最后一刻,又把坑填平了. cocos2dx 2.x到3.x是一个巨大的变化,能够算是全 ...