Sum It Up

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 4   Accepted Submission(s) : 1

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source

浙江工业大学第四届大学生程序设计竞赛
做练习的时候,纠结死啦!
当时我一直在想怎样判重,自己YY了一个hash函数 WA了。。。
网上的一种解法不需要判重,剪枝就可以了。按照那个思路我重新敲了一下。
code1: (dfs+剪枝)
poj:
Accepted 388K 0MS G++ 930B
#include <stdio.h>
#include <string.h> int a[15];
int p[15];
int vis[15];
int t, n, flag; void dfs(int k, int sum) {
int i;
if(k>n || sum<0) return ;
if(sum==0) {
flag = 1;
for(i=0; i<k-1; i++)
printf("%d+",p[i]);
printf("%d\n",p[i]);
return ;
}
for(i=k; i<n; i++)
if(!vis[i]) {
if(sum-a[i]<0||(k>0&&a[i]>p[k-1])) continue;
vis[i] = 1;
p[k] = a[i];
dfs(k+1,sum-a[i]);
vis[i] = 0;
while(i+1<n&&a[i]==a[i+1]) i++; //搜索完毕后,若下一个搜索的数仍与当前相同,则寻找下一个不同的数进行搜索。{去重}
}
}
int main() {
int i;
while(scanf("%d%d",&t,&n),t+n) {
for(i=0; i<n; i++) scanf("%d",&a[i]);
i = 0;
while(i<n&&a[i]>t) i++;
printf("Sums of %d:\n",t);
flag = 0;
memset(vis,0,sizeof(vis));
dfs(i,t);
if(!flag) printf("NONE\n");
}
return 0;
}

code2:(用 set 去重:在POJ和ZOJ上提交全挂,不过hdu上能AC,呃呃呃~) 


HDU:
Accepted 1258 0MS 340K 1286 B G++

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <set>
using namespace std;
#define N 20
int t, n;
int a[N];
int list[N];
bool vis[N];
set<string> s;
bool flag; void dfs(int k, int sum) {
int i;
if(k>=n || sum<0) return;
if(sum==0) {
string str;
for(i=0; i<k; i++) {
str +=(list[i]/10) +'0';
str +=(list[i]%10) +'0';
}
if(s.find(str)==s.end()) {
s.insert(str);
flag = 1;
for(i=0; i<k-1; i++)
printf("%d+",list[i]);
printf("%d\n",list[i]);
}
return ;
}
for(i=k; i<n; i++)
if(!vis[i]&&(k==0||a[i]<=list[k-1])) {
vis[i] = 1;
list[k] = a[i];
dfs(k+1,sum-a[i]);
vis[i] = 0;
}
}
int main() {
int i;
while(scanf("%d%d",&t,&n),t+n) {
for(i=0; i<n; i++) {
scanf("%d",&a[i]);
}
memset(vis,0,sizeof(vis));
printf("Sums of %d:\n",t);
flag = false;
s.clear();
dfs(0,t);
if(!flag) printf("NONE\n");
}
return 0;
}


poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)的更多相关文章

  1. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  2. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up【dfs+去重】

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Descrip ...

  5. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. POJ 1564 Sum It Up (DFS+剪枝)

                                                                                                       ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  9. hdu 4821 字符串hash+map判重 String (长春市赛区I题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4821 昨晚卡了非常久,開始TLE,然后优化了之后,由于几个地方变量写混.一直狂WA.搞得我昨晚都失眠了,,. 这 ...

随机推荐

  1. zepto API参考(~~比较全面)

    Zepto是一个轻量级的针对现代高级浏览器的JavaScript库, 它与jquery有着类似的api. 如果你会用jquery,那么你也会用zepto. 设计的目的是提供jquery的类似的APIs ...

  2. 一个简单的基于canvas小游戏

    GDOI2016是我的退役战,不知道是题目画风不对,还是我自身的问题. 不过没关系啦,反正已经进过一次队OI生涯就没有什么遗憾的了. 这几天尝试着去做了个所谓的html5小游戏,略显简陋,但还是写个总 ...

  3. IT第三天 - 数据类型、转换、Scanner使用

    IT第三天 上午 变量类型 1.6种数值类型:byte.short.int.long.float.double:其中byte是8个字节,short是16字节,int是32字节.long是64字节:日常 ...

  4. 如何优化cocos2d/x内存使用和程序大小的程序

    从最初的:http://www.himigame.com/iphone-cocos2d/1043.html 译者: 在我完毕第一个游戏项目的时候.我深切地意识到"使用cocos2d来制作游戏 ...

  5. [POJ 1521]--Entropy(哈夫曼树)

    题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS    Memory Limit: 10000K Description A ...

  6. 五张图概括 什么是 ASP 、 ASP.NET (Web Pages,Web Forms ,MVC )

    当你看懂下面这五张图,我相信你对于学习.NET Web开发路线将不陌生!                                               来源: http://www.w3 ...

  7. 利用CentOS系统IPtables防火墙添加网站IP白名单

    参考博文: 利用CentOS系统IPtables防火墙添加360网站卫士节点IP白名单 centos6.5添加白名单如下: 在防火墙 配置文件中加入白名单  ip -A INPUT -s 183.13 ...

  8. 初识Channel

    java.nio.channels 中的接口和类. A channel represents an open connection to an entity such as a hardware de ...

  9. 7.2.1 生成1~n的排列(全排列)【STL__next_permutation()_的应用】

    #include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> ...

  10. struts2--配置文件中使用通配符

    struts2的配置文件是 struts.xml.. 在这个配置文件里面可以使用通配符..其中的好处就是,大大减少了配置文件的内容..当然,相应付出的代价是可读性.. 使用通配符的原则是 约定高于配置 ...