Sum It Up

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 4   Accepted Submission(s) : 1

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source

浙江工业大学第四届大学生程序设计竞赛
做练习的时候,纠结死啦!
当时我一直在想怎样判重,自己YY了一个hash函数 WA了。。。
网上的一种解法不需要判重,剪枝就可以了。按照那个思路我重新敲了一下。
code1: (dfs+剪枝)
poj:
Accepted 388K 0MS G++ 930B
#include <stdio.h>
#include <string.h> int a[15];
int p[15];
int vis[15];
int t, n, flag; void dfs(int k, int sum) {
int i;
if(k>n || sum<0) return ;
if(sum==0) {
flag = 1;
for(i=0; i<k-1; i++)
printf("%d+",p[i]);
printf("%d\n",p[i]);
return ;
}
for(i=k; i<n; i++)
if(!vis[i]) {
if(sum-a[i]<0||(k>0&&a[i]>p[k-1])) continue;
vis[i] = 1;
p[k] = a[i];
dfs(k+1,sum-a[i]);
vis[i] = 0;
while(i+1<n&&a[i]==a[i+1]) i++; //搜索完毕后,若下一个搜索的数仍与当前相同,则寻找下一个不同的数进行搜索。{去重}
}
}
int main() {
int i;
while(scanf("%d%d",&t,&n),t+n) {
for(i=0; i<n; i++) scanf("%d",&a[i]);
i = 0;
while(i<n&&a[i]>t) i++;
printf("Sums of %d:\n",t);
flag = 0;
memset(vis,0,sizeof(vis));
dfs(i,t);
if(!flag) printf("NONE\n");
}
return 0;
}

code2:(用 set 去重:在POJ和ZOJ上提交全挂,不过hdu上能AC,呃呃呃~) 


HDU:
Accepted 1258 0MS 340K 1286 B G++

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <set>
using namespace std;
#define N 20
int t, n;
int a[N];
int list[N];
bool vis[N];
set<string> s;
bool flag; void dfs(int k, int sum) {
int i;
if(k>=n || sum<0) return;
if(sum==0) {
string str;
for(i=0; i<k; i++) {
str +=(list[i]/10) +'0';
str +=(list[i]%10) +'0';
}
if(s.find(str)==s.end()) {
s.insert(str);
flag = 1;
for(i=0; i<k-1; i++)
printf("%d+",list[i]);
printf("%d\n",list[i]);
}
return ;
}
for(i=k; i<n; i++)
if(!vis[i]&&(k==0||a[i]<=list[k-1])) {
vis[i] = 1;
list[k] = a[i];
dfs(k+1,sum-a[i]);
vis[i] = 0;
}
}
int main() {
int i;
while(scanf("%d%d",&t,&n),t+n) {
for(i=0; i<n; i++) {
scanf("%d",&a[i]);
}
memset(vis,0,sizeof(vis));
printf("Sums of %d:\n",t);
flag = false;
s.clear();
dfs(0,t);
if(!flag) printf("NONE\n");
}
return 0;
}


poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)的更多相关文章

  1. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  2. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up【dfs+去重】

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Descrip ...

  5. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. POJ 1564 Sum It Up (DFS+剪枝)

                                                                                                       ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  9. hdu 4821 字符串hash+map判重 String (长春市赛区I题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4821 昨晚卡了非常久,開始TLE,然后优化了之后,由于几个地方变量写混.一直狂WA.搞得我昨晚都失眠了,,. 这 ...

随机推荐

  1. 转:不会定义jQuery插件,不要说会jQuery

    一:导言 有些WEB开发者,会引用一个JQuery类库,然后在网页上写一写$("#"),$("."),写了几年就对别人说非常熟悉JQuery.我曾经也是这样的人 ...

  2. USB接口的SmartCard Class协议标准:ICCD and CCID

    ICCD是 Intergrated Circuit(s) card Device 的缩写.CCID是 Integrated Circuit(s) cards interface devices的缩写I ...

  3. angularJS友好URL实现 good

    nginx部署 angularjs时的rewrite问题 使用h5+angularjs完成了一个项目 此项目在正式环境上使用nginx做webserver 此项目的入口在微信/微博分享中 由于分享时的 ...

  4. Unity Notes调制粒子系统的颗粒的最大数目

    Unity该粒子系统是很容易使用.这样的问题是在实际的过程中遇到的:以控制的粒子系统组件的动态需要可产生颗粒的最大数目. 看doc他说,有maxParticles控制.却没有这个开放的參数.仅仅能通过 ...

  5. bootstrap框架开发电子商城案例

    bootstrap框架开发电子商城案例 玛图 bootstrap 商城框架

  6. 【Hibernate】双向多对多Set查询

    一个计划对于多个竞价,一个竞价对应多个计划. 1.实体 /** * @author Tidy * @Description 计划 */ public class EbgStockPlanContent ...

  7. 欧拉函数K - Relatives

    欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n). 特殊性质:当n为奇数时,φ(2n)=φ(n), φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..( ...

  8. [转][Swust OJ 24]--Max Area(画图分析)

    转载自:http://www.cnblogs.com/hate13/p/4160751.html Max Area 题目描述:(链接:http://acm.swust.edu.cn/problem/2 ...

  9. 树莓派安装mysql

    首先我想启用root用户,所以我先启用root用户: sudo passwd root 这里会提示输入两次密码,然后: sudo passwd --unlock root 这样就可以启动root登录, ...

  10. centos php扩展开发流程

    原文:centos php扩展开发流程 一.安装php centos 默认 yum 安装 php 版本为 5.3, 很多php框架基本上要求5.4以上版本,这时候不能直接 用 yum install ...