猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM
作者:樱花猪
摘要:
本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记。隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程。其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析。在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用。
引言:
隐马尔科夫模型是马尔科夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔科夫模型是一个双重随机过程----具有一定状态数的隐马尔科夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。HMM在生物信息科学、故障诊断等领域也开始得到应用。
本次课程以中文分子算法为实践背景基础来讲述隐马尔科夫模型。本次课程主要分享了隐马尔科夫模型的概率计算、参数估计和模拟预测等方法,结合课程上提到的实力,我们能够感受大HMM能够经久不衰的强大力量。
马尔科夫模型在推导过程中用到了之前提到的一些经典算法需要融汇贯通。
预备知识:
概率论和数理统计、矩阵论、贝叶斯网络、EM算法
一、隐马尔科夫模型:
1、定义
隐马尔科夫模型(HMM,Hidden Markov Model)可用标注问题,在语音识别、NLP、生物信息、模式识别等领域被实践证明是有效的算法。
HMM是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程。
隐马尔科夫模型随机生成的状态随机序列,称为状态序列;每个状态生成一个观测,由此产生的观测随机序列,称为观测序列。
Z是未知的,X是已知的,我们通过对X来做Z的推论,就是隐马尔科夫模型。
2、HMM的确定
HMM由初始概率分布π、状态转移概率分布A以及观测概率分布B确定。
描述整个隐码模型。
3、HMM的参数:
Q是所有可能的状态的集合,N是可能的状态数;
V是所有可能的观测的集合,M是可能的观测数。
二、HMM的概率计算问题:
1、直接计算:
按照概率公式,列举所有可能的长度为T的状态序列,求各个状态序列I与观测序列
的联合概率
,然后对所有可能的状态序列求和,从而得到
。
2、前向算法
前向概率定义:给定λ,定义到时刻t部分观测序列为且状态为qi的概率称为前向概率,记做:
前向算法计算方案:
初值:
递推:对于t=1,2,...,T-1
有:
最终:
3、后向算法
定义:给定λ,定义到时刻t状态为qi的前提下,从t+1到T的部分观测序列为的概率为后向概率,记做:
计算方法:
初值:
递推:对于t=T-1,T-2,...,1
最终:
二、预测算法
1、预测的近似算法
A. 在每个时刻t选择在该时刻最有可能出现的状态it*,从而得到一个状态序列I*={i1*,i2*…iT*},将它作为预测的结果。
B. 给定模型和观测序列,时刻t处于状态qi的概率为:
C. 选择概率最大的i作为最有可能的状态(注:会出现此状态在实际中可能不会发生的情况)
2、Viterbi算法
Viterbi算法实际是用动态规划解HMM预测问题,用DP求概率最大的路径(最优路径),这是一条路径对应一个状态序列。
定义变量:在时刻t状态为i的所有路径中,概率的最大值。
具体过程:
定义:
递推:
猪猪的机器学习笔记(十七)隐马尔科夫模型HMM的更多相关文章
- 机器学习之隐马尔科夫模型HMM(六)
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步 ...
- 机器学习中的隐马尔科夫模型(HMM)详解
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...
- 隐马尔科夫模型HMM(一)HMM模型
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比 ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...
- 用hmmlearn学习隐马尔科夫模型HMM
在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文 ...
随机推荐
- 【LeetCode题意分析&解答】39. Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...
- IC封装
1.QFN •QFN—Quad Flat No-lead Package 四方无引脚扁平封装 2.SOIC •SOIC—Small Outline IC 小外形IC封装 3.TSSOP •TSSOP— ...
- C#实现大数据量TXT文本数据快速高效去重
原文 C#实现大数据量TXT文本数据快速高效去重 对几千万的TXT文本数据进行去重处理,查找其中重复的数据,并移除.尝试了各种方法,下属方法是目前尝试到最快的方法.以下代码将重复和不重复数据进行分文件 ...
- CCNP路由实验(3) -- 路由控制
1.用distribute-list过滤路由在不同协议里的用法 在RIP里 在EIGRP里 在OSPF里 只接收奇数路由 只接收偶数路由 只接收被4整除的路由2.offset-list在不同协议里的用 ...
- 基于SMTP协议的CMD命令邮件发送
网上有不少的这类的文章,以是参照这些文章后,自己实际运行的结果.系统使用的是WIN7 旗舰版. 1.打开CMD命令后,连接到SMTP服务器,如连接到QQ的SMTP服务,输入命令 telnet smtp ...
- 有关VS2008制作安装包时遇到的问题详解
公司最近要做一个安装包,然而在做的时候遇到好多问题,这里我一一记录下来 一.先用VS2008建一个Setup项目,添加你需要打包的文件,这里我就不具体介绍了,网上一搜都好多,这时我们一般都需要在安装前 ...
- 简单的web三层架构系统【第二版】
昨天写了 web三层架构的第一版,准确的说是三层架构的前期,顶多算是个二层架构,要慢慢完善. 第一版里,程序虽说能运行起来,但是有一个缺陷,就是里面的SQL语句,是使用的拼接字符进行执行.这样安全系数 ...
- Android应用开发基础篇(9)-----SharedPreferences
链接地址:http://www.cnblogs.com/lknlfy/archive/2012/02/27/2370319.html 一.概述 对于SharedPreferences,我吧它理解为一种 ...
- c++ primer plus 习题答案(4)
p333.3 #include<iostream> #include<cstdlib> #include<cstring> #include<string&g ...
- MYSQL异常和错误机制
BEGIN ; ; ; START TRANSACTION; call put_playerbehavior(i_playerid,i_gameid,i_channelid,i_acttime,@a) ...