题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与所有的col[]和总和最小( N <= 500, 其它输入数为正整数且 <= 100)。

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2378

——>>row[i] + col[j] >= w[i][j],这个恰恰是二分图最佳完美匹配的一个式子,所以,以行row为X结点,以列col为Y结点,权值即为对应元素w[i][j]的值建图,跑一次KM就好。

另外发现:用scanf("%d", &N) == 1比用~scanf("%d", &N)快了3ms。。。

#include <cstdio>
#include <algorithm> using namespace std; const int maxn = 500 + 10;
const int INF = 0x3f3f3f3f; int N, w[maxn][maxn], lx[maxn], ly[maxn], fa[maxn];
bool S[maxn], T[maxn]; bool match(int i){
S[i] = 1;
for(int j = 1; j <= N; j++) if(lx[i] + ly[j] == w[i][j] && !T[j]){
T[j] = 1;
if(!fa[j] || match(fa[j])){
fa[j] = i;
return 1;
}
}
return 0;
} void update(){
int a = INF;
for(int i = 1; i <= N; i++) if(S[i])
for(int j = 1; j <= N; j++) if(!T[j])
a = min(a, lx[i] + ly[j] - w[i][j]);
for(int i = 1; i <= N; i++){
if(S[i]) lx[i] -= a;
if(T[i]) ly[i] += a;
}
} void KM(){
for(int i = 1; i <= N; i++){
fa[i] = lx[i] = ly[i] = 0;
for(int j = 1; j <= N; j++) lx[i] = max(lx[i], w[i][j]);
}
for(int i = 1; i <= N; i++)
while(1){
for(int j = 1; j <= N; j++) S[j] = T[j] = 0;
if(match(i)) break;
else update();
}
} void read(){
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++) scanf("%d", &w[i][j]);
} void solve(){
for(int i = 1; i < N; i++) printf("%d ", lx[i]); printf("%d\n", lx[N]);
for(int i = 1; i < N; i++) printf("%d ", ly[i]); printf("%d\n", ly[N]);
int sum = 0;
for(int i = 1; i <= N; i++) sum += lx[i] + ly[i];
printf("%d\n", sum);
} int main()
{
while(scanf("%d", &N) == 1){
read();
KM();
solve();
}
return 0;
}

Uva - 11383 - Golden Tiger Claw的更多相关文章

  1. UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)

    UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...

  2. UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)

    题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...

  3. UVA 11383 Golden Tiger Claw 金虎爪(KM算法)

    题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...

  4. UVA 11383 Golden Tiger Claw 题解

    题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...

  5. 【KM算法】UVA 11383 Golden Tiger Claw

    题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...

  6. 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...

  7. uva11383 Golden Tiger Claw 深入理解km算法

    /** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...

  8. UVA11383 Golden Tiger Claw

    题目 UVA11383 Golden Tiger Claw 做法 \(KM\)好题啊,满足所有边\(l(x)+l(y)≥w(x,y)\)(个人理解,如不对请及时留言),这样能满足\(\sum\limi ...

  9. Golden Tiger Claw(二分图)

    Golden Tiger Claw 题意 找到和最小的两个序列a,b满足对于任意i,j有a[i]+b[j]>=c[i][j](矩阵c给出). solution 裸的二分图就水过了-- #incl ...

随机推荐

  1. C++ cout 如何保留小数输出

    参考 : http://upliu.net/how-cout-out-2-precision.html 大家都知道用 C 语言中 printf () 函数可以非常方便控制保留 几位小数输出 不过在 C ...

  2. CodeForces 294B Shaass and Bookshelf 【规律 & 模拟】或【Dp】

    这道题目的意思就是排两排书,下面这排只能竖着放,上面这排可以平着放,使得宽度最小 根据题意可以得出一个结论,放上这排书的Width 肯定会遵照从小到大的顺序放上去的 Because the total ...

  3. 设置QPushButton的平面与突出(遍历控件)

    #include "ui_maindialog.h" #include "maindialog.h" #include <QState> #incl ...

  4. Mysql 启动失败 报错 1067

    Mysql装好后,重启电脑第二次发现服务无法启动.提示如下: ------------------------ MySQL 服务无法启动. 系统出错. 发生系统错误 1067. 进程意外终止. --- ...

  5. quartz群调查调度机制和源代码分析

    pageId=85056282#quartz集群调度机制调研及源代码分析-quartz2.2.1集群调度机制调研及源代码分析" style="color:rgb(59,115,17 ...

  6. Swift实战-QQ在线音乐(第一版)

    //一.*项目准备 1.QQ音乐App 界面素材:(我使用PP助手,将QQ音乐App备份,解压ipa文件 即可得到里面的图片素材) 2.豆瓣电台接口:"http://douban.fm/j/ ...

  7. 边框圆角化方式(原文链接http://www.cnblogs.com/SJP666/p/4678730.html)

    第一种方法:如果是CSS2.2的话,可以简单写一个制作圆角矩形,分上中下裁成三张图 <title>CSS3实现圆角</title> <style type="t ...

  8. Android项目使用Assets下的文件

    Android项目在编译时,Assets下文件不被编译. Assets下的文件除了 html文件可以直接在项目中使用外,其他的文件都需要做处理滴. 在项目中使用方法:        使用流读取.   ...

  9. 一天一个类,一点也不累 之 LinkedList

    我们的口号是,一天一个类,一点也不累 .. 今天要讲的是---LinkedList 首先,还是看看他的组织结构 Class LinkedList<E> java.lang.Object j ...

  10. perl 面向对象 use base

    1.XXX.pm 文件里面的第一行要是:package XXX: 2.要有构造函数 sub new,实现如下: sub new { my $class = shift; # Get the reque ...