Majority Element 解答
Solution 1
Naive way
First, sort the array using Arrays.sort in Java. Than, scan once to find the majority element. Time complexity O(nlog(n))
public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
Arrays.sort(nums);
int prev = nums[0];
int count = 1;
for (int i = 1; i < length; i++) {
if (nums[i] == prev) {
count++;
if (count > length / 2) return nums[i];
} else {
prev = nums[i];
count = 1;
}
}
return 0;
}
}
Solution 2
Since the majority always take more than a half space, the middle element is guaranteed to be the majority.
public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
Arrays.sort(nums);
return nums[length / 2];
}
}
Solution 3 Moore voting algorithm
As we iterate the array, we look at the current element x:
- If the counter is 0, we set the current candidate to x and the counter to 1.
- If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate.
After one pass, the current candidate is the majority element. Runtime complexity = O(n).
public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
int maj = nums[0];
int count = 0;
for (int i = 0; i < length; i++) {
if (count == 0) {
maj = nums[i];
count = 1;
} else if (nums[i] == maj) {
count++;
} else {
count--;
}
}
return maj;
}
}
Solution 4 Bit Manipulation
We would need 32 iterations, each calculating the number of 1's for the ith bit of all n numbers. Since a majority must exist, therefore, either count of 1's > count of 0's or vice versa (but can never be equal). The majority number’s ith bit must be the one bit that has the greater count.
Time complexity: 32 * n = T(n)
public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
int[] dig = new int[32];
for (int i = 0; i < length; i++) {
int tmp = nums[i];
for (int j = 0; j < 32; j++) {
dig[j] += tmp & 1;
tmp = tmp >> 1;
}
}
int max = 0;
int tmp = 1;
for (int i = 0; i < 32; i++) {
if (dig[i] > length / 2) {
max = max | tmp;
}
tmp = tmp << 1;
}
return max;
}
}
Majority Element 解答的更多相关文章
- Majority Element II 解答
Question Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. Th ...
- [LeetCode] Majority Element II 求众数之二
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...
- [LeetCode] Majority Element 求众数
Given an array of size n, find the majority element. The majority element is the element that appear ...
- 【leetcode】Majority Element
题目概述: Given an array of size n, find the majority element. The majority element is the element that ...
- ✡ leetcode 169. Majority Element 求出现次数最多的数 --------- java
Given an array of size n, find the majority element. The majority element is the element that appear ...
- (Array)169. Majority Element
Given an array of size n, find the majority element. The majority element is the element that appear ...
- LeetCode 169. Majority Element
Given an array of size n, find the majority element. The majority element is the element that appear ...
- [UCSD白板题] Majority Element
Problem Introduction An element of a sequence of length \(n\) is called a majority element if it app ...
- Leetcode # 169, 229 Majority Element I and II
Given an array of size n, find the majority element. The majority element is the element that appear ...
随机推荐
- Maven--多模块依赖实例解析(五)
<Maven--搭建开发环境(一)> <Maven--构建企业级仓库(二)> <Maven—几个需要补充的问题(三)> <Maven—生命周期和插件(四)&g ...
- Win32/MFC的基本概念
一.MFC的基本概念 单文档.多文档和对话框框架的区别 MFC中的类继承图的基本框架 CView类与CDocument的关系 Onpaint()和Ondraw()的关系 hdc-cdc区别联系 RUN ...
- Laravel 4 Blade模板引擎
http://my.oschina.net/5say/blog/201290 模板输出 基本输出 1 <!-- app/views/example.blade.php --> 2 < ...
- this关键字的解析
this关键字的作用: 1.表示类中的属性. class Person{ // 定义Person类 private String name ; // 姓名 private int age ; // 年 ...
- gcc/g++/make 编译信息带颜色输出
假设编译一个项目错误警告太多.很不好找,所以很希望输出信息能够带有颜色. 但是 gcc 4.9.0 之前的版本号并不支持,非常多情况下是不能替换编译器的,比方使用交叉编译器, 也能够使用 colorg ...
- C# 创建验证码图片
using System; using System.Drawing; using System.Drawing.Drawing2D; using System.Drawing.Imaging; us ...
- 临时解决linux下time wait问题
通过 netstat -anp | grepTIME_WAIT | wc -l 命令查看数量,发现TIME_WAIT的连接数量超过了阈值 1.初步怀疑是程序没有关闭连接,codereview了 ...
- 树状dp ural1018
#include<stdio.h> #include<string.h> #include <iostream> using namespace std; ; in ...
- Tornado模块分类和各模块之间的关系
1. Core web framework tornado.web — 包含web框架的大部分主要功能,包含RequestHandler和Application两个重要的类 tornado.https ...
- C++格式化字符函数
格式化有很多种方法,啊,1,sprintf函数可以实现格式化字符串,并保存到一个字符数组2,snprintf也能实现但比起sprintf函数稍微要安全一些了啊3,ostringstream对象也能实现 ...