[九省联考2018]林克卡特树(DP+wqs二分)
对于k=0和k=1的点,可以直接求树的直径。
然后对于60分,有一个重要的转化:就是求在树中找出k+1条点不相交的链后的最大连续边权和。
这个DP就好。$O(nk^2)$
然后我们完全不可以想到,将best[k](选择k条链的答案)打表输出,更不可能然后作差分,发现得到的数组是递减的。
这说明:best[k]是一个上凸包。
于是我们可以二分一个斜率去切这个凸包(类似导数),根据切点横坐标与k的大小旋转直线(改变斜率)。
考虑给你一个直线斜率k,怎么找到它和凸包的切点。实际上就相当于将这个凸函数减去y=kx,再求凸包最高点。
感性理解一下,就是相当于在凸包下面画一条直线,然后旋转整个坐标系使这条直线就是x轴,然后正确性就比较显然了。
现在问题就是,如何找到最高点,这成了一个最优性问题,DP方程里可以去掉一维(已选链数不需要记录了)。
这样就可以通过了,复杂度$O(kn\log n)$。这又叫WQS二分。
https://www.luogu.org/problemnew/solution/P4383
https://blog.csdn.net/izumi_hanako/article/details/80071419
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int n,k,u,v,w,cnt,to[N<<],nxt[N<<],val[N<<],h[N];
ll mid,tot;
void add(int u,int v,int w){ to[++cnt]=v; val[cnt]=w; nxt[cnt]=h[u]; h[u]=cnt; }
struct P{
ll x,y;
bool operator < (const P &b) const {return x==b.x? y>b.y : x<b.x;}
P operator + (const P &b) const {return (P){x+b.x,y+b.y};}
P operator + (int b) {return (P){x+b,y};}
}dp[][N];
P upd(P a){ return (P){a.x-mid,a.y+}; } void dfs(int u,int fa){
dp[][u]=max(dp[][u],(P){-mid,});
for (int i=h[u],v; i; i=nxt[i])
if ((v=to[i])!=fa){
dfs(v,u);
dp[][u]=max(dp[][u]+dp[][v],upd(dp[][u]+dp[][v]+val[i]));
dp[][u]=max(dp[][u]+dp[][v],dp[][u]+dp[][v]+val[i]);
dp[][u]=dp[][u]+dp[][v];
}
dp[][u]=max(dp[][u],max(upd(dp[][u]),dp[][u]));
} int main(){
freopen("lct.in","r",stdin);
freopen("lct.out","w",stdout);
scanf("%d%d",&n,&k); k++;
rep(i,,n) scanf("%d%d%d",&u,&v,&w),tot+=abs(w),add(u,v,w),add(v,u,w);
ll L=-tot,R=tot;
while (L<=R){
mid=(L+R)>>; memset(dp,,sizeof(dp)); dfs(,);
if (dp[][].y<=k) R=mid-; else L=mid+;
}
memset(dp,,sizeof(dp)); mid=L; dfs(,); printf("%lld\n",L*k+dp[][].x);
return ;
}
[九省联考2018]林克卡特树(DP+wqs二分)的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- luogu P4383 [九省联考2018]林克卡特树lct
传送门 题目操作有点奇怪,不过可以发现这就是把树先变成\(k+1\)个连通块,然后每个连通块选一条路径(本题中一个点也是一条路径),然后依次接起来.所以实际上要求的是选出\(k+1\)条点不相交的路径 ...
- luogu4383 [八省联考2018]林克卡特树(带权二分+dp)
link 题目大意:给定你 n 个点的一棵树 (边有边权,边权有正负) 你需要移除 k 条边,并连接 k 条权值为 0 的边,使得连接之后树的直径最大 题解: 根据 [POI2015]MOD 那道题, ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
随机推荐
- 【NOIP模拟赛】chess 建图+spfa统计方案数
似乎弗洛伊德和迪杰斯特拉都干不了统计方案数,spfa的话就是不断入队就好. #include <cstdio> #include <cstring> #include < ...
- 【BZOJ3038】上帝造题的七分钟2 线段树
根据一个数六次√必死,我们可以打标记死了就不管他了,于是有贡献的操作复杂度为O(n*logn*6),然而我们还有由于盲目修改造成的多余代价我们把每次查询的区间分成三部分前全死,中残,后全死,对于中残, ...
- string 类型转换
string转int "; int n = atoi(str.c_str()); cout << n << endl; int转string #include < ...
- ubuntu下opencv使用cvNamedWindow()和cvShowImage()出错的解决方法
重装系统和opencv,编译运行显示一副图像的程序,报错如下 liurf@liurf-Lenovo-G470:~/WorkSpace/slambook-master/ch5/imageBasics$ ...
- Spring学习--实现 FactoryBean 接口在 Spring IOC 容器中配置 Bean
Spring 中有两种类型的 bean , 一种是普通的 bean , 另一种是工厂 bean , 即 FactroyBean. 工厂 bean 跟普通 bean 不同 , 其返回的对象不是指定类的一 ...
- vue入门知识
vue的特点在于:响应的数据绑定.组合的视图组件. vue的文件,分成三个部分<template>html模板</template> <script>js< ...
- Nginx中的长连接
在nginx中,对于http1.0与http1.1是支持长连接的 我们知道,http请求是基于TCP协议之上的,那么,当客户端在发起请求前,需要先与服务端建立TCP连接,而每一次的TCP连接是需要三次 ...
- Security+考试通过心得
Security+ Security+ 认证是一种中立第三方认证,其发证机构为美国计算机行业协会CompTIA:是和CISSP.CISA等共同包含在内的国际IT业热门认证之一,和CISSP偏重信息安全 ...
- 类的 propert,classmethod,ataticmethod 方法 与 多态
一 .property 将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉自己的name是执行了一个函数 然后计算出来的,这种特性的使用方式遵循了统一访问的原则 egon. ...
- linux基础编程 套接字socket 完整的服务器端多线程socket程序【转】
转自:http://blog.csdn.net/ghostyu/article/details/7737203 此段程序来自我的一个项目中,稍微做了些修改,运行稳定,客户端程序比较简单所以未编写,可以 ...