链接:



Truck History
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 14950   Accepted: 5714

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase
letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types
were derived, and so on. 



Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different
letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as 

1/Σ(to,td)d(to,td)


where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types. 

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan. 

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that
the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

Source

题意:

                给你 N 个字符串,求串通他们的最小距离和

        每个字符串都只有 7 个字符
        两个字符串的距离就是数出对应位置不同的字符个数
         

算法:最小生成树


思路:

                 把每个字符串看成一个地点,字符串间不同的字符个数看成地点间的距离。套用最小生成树就好了

Kruskal:

1789 Accepted 22860K 563MS C++ 1378B
//Accepted	22860 KB	579 ms	C++	1302 B	2013-07-31 09:37:35
#include<stdio.h>
#include<algorithm>
using namespace std; const int maxn = 2000+10;
char map[maxn][10];
int p[maxn];
int n,m; struct Edge{
int u,v;
int w;
}edge[maxn*maxn/2]; int dist(int st, int en)
{
int distance = 0;
for(int i = 0; i < 7; i++)
if(map[st][i] != map[en][i])
distance++;
return distance;
} bool cmp(Edge a, Edge b)
{
return a.w < b.w;
} int find(int x)
{
return x == p[x] ? x : p[x] = find(p[x]);
} int Kruskal()
{
int ans = 0;
for(int i = 1; i <= n; i++) p[i] = i;
sort(edge,edge+m,cmp); for(int i = 0; i < m; i++)
{
int u = find(edge[i].u);
int v = find(edge[i].v); if(u != v)
{
p[v] = u;
ans += edge[i].w;
}
}
return ans;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
scanf("%s", map[i]); m = 0;
for(int i = 1; i <= n; i++)
{
for(int j = i+1; j <= n; j++)
{
edge[m].u = i;
edge[m].v = j;
edge[m++].w = dist(i,j);
}
} int ans = Kruskal();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}

Prime:

Accepted 15672K 454MS C++ 1289B 2013-07-31 09:38:56
//Accepted	15672 KB	469 ms	C++	1227 B	2013-07-31 09:37:25
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 2000+10;
const int INF = maxn*7; char map[maxn][10];
int w[maxn][maxn];
int d[maxn];
int vis[maxn];
int n; int dist(int st, int en)
{
int distance = 0;
for(int i = 0; i < 7; i++)
if(map[st][i] != map[en][i])
distance++;
return distance;
} int Prime()
{
int ans = 0;
for(int i = 1; i <= n; i++) d[i] = INF;
d[1] = 0;
memset(vis, 0, sizeof(vis)); for(int i = 1; i <= n; i++)
{
int x, m = INF;
for(int y = 1; y <= n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1; ans += d[x];
for(int y = 1; y <= n; y++) if(!vis[y])
d[y] = min(d[y], w[x][y]);
}
return ans;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break; for(int i = 1; i <= n; i++) scanf("%s", map[i]); for(int i = 1; i <= n; i++)
{
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(i,j);
w[j][i] = w[i][j];
}
} int ans = Prime();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}

POJ 1789 Truck History【最小生成树简单应用】的更多相关文章

  1. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  2. poj 1789 Truck History 最小生成树 prim 难度:0

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19122   Accepted: 7366 De ...

  3. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  4. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  5. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  6. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  7. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  8. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  9. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

随机推荐

  1. sqlite3 解决并发读写冲突的问题

    #include "stdafx.h" #include "sqlite3.h" #include <iostream> #include < ...

  2. dubbo笔记

    使用Maven打包依赖项,启动时从本地jar中读取dubbo.xsd 最近项目用到dubbo,打包启动时报错 Failed to read schema document from http://co ...

  3. js 队列和事件循环

    1.示例代码 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UT ...

  4. 《DirectX 9.0 3D游戏开发编程基础》 第一章 初始化Direct3D 读书笔记

    REF设备 参考光栅设备,他能以软件计算方式完全支持Direct3D Api.借助Ref设备,可以在代码中使用那些不为当前硬件所支持的特性,并对这此特性进行测试. D3DDEVTYPE 在程序代码中, ...

  5. 《深入浅出mfc》 第1章 笔记

    需要什么函数库(.lib) windows支持动态链接库,应用程序所调用 的windows api 函数是在“执行期间“才链接上的.Windows程序调用 可以分为 C Runtimes以及windo ...

  6. 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法

    (一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...

  7. 关于angularjs在IE里的坑——F12工具打开,功能正常,关闭之后,angularjs not working

    前端时间在做项目的时候,用到了angularjs,期间,发现了一个奇葩的问题,就是在IE11浏览器下,点击下方图1上箭头所示的位置,将此处的开关变为图2中箭头所示的样子,但是发觉没有反应,开关还是灰色 ...

  8. 在 Windows 上安装 TensorFlow(转载)

    在 Windows 上安装 TensorFlow windows下配置安装Anaconda+tensorflow Spyder——科学的Python开发环境 Windows7 安装TensorFlow ...

  9. Crontab使用方式

    Liunx系统的定时任务需要Crontab来完成 一.添加 添加定时脚本 crontab -e 或者直接编辑/etc/crontab文件进行任务添加 vim /etc/crontab 二.格式 三.举 ...

  10. samba在linux下的配置

    Samba配置过程容易遇到的问题 samba的安装很简单,搜索一下都能找到.我主要是记录一上我碰到的问题及解决的办法 第一个问题 防火墙的问题,粗暴的办法是直接把防火墙关掉,合适的做法是把samba用 ...