POJ 1789 Truck History【最小生成树简单应用】
链接:
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 14950 | Accepted: 5714 |
Description
letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types
were derived, and so on.
Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different
letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as
1/Σ(to,td)d(to,td)
where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types.
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.
Input
the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.
Output
Sample Input
4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0
Sample Output
The highest possible quality is 1/3.
Source
题意:
算法:最小生成树
思路:
Kruskal:
1789 | Accepted | 22860K | 563MS | C++ | 1378B |
//Accepted 22860 KB 579 ms C++ 1302 B 2013-07-31 09:37:35
#include<stdio.h>
#include<algorithm>
using namespace std; const int maxn = 2000+10;
char map[maxn][10];
int p[maxn];
int n,m; struct Edge{
int u,v;
int w;
}edge[maxn*maxn/2]; int dist(int st, int en)
{
int distance = 0;
for(int i = 0; i < 7; i++)
if(map[st][i] != map[en][i])
distance++;
return distance;
} bool cmp(Edge a, Edge b)
{
return a.w < b.w;
} int find(int x)
{
return x == p[x] ? x : p[x] = find(p[x]);
} int Kruskal()
{
int ans = 0;
for(int i = 1; i <= n; i++) p[i] = i;
sort(edge,edge+m,cmp); for(int i = 0; i < m; i++)
{
int u = find(edge[i].u);
int v = find(edge[i].v); if(u != v)
{
p[v] = u;
ans += edge[i].w;
}
}
return ans;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
scanf("%s", map[i]); m = 0;
for(int i = 1; i <= n; i++)
{
for(int j = i+1; j <= n; j++)
{
edge[m].u = i;
edge[m].v = j;
edge[m++].w = dist(i,j);
}
} int ans = Kruskal();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}
Prime:
Accepted | 15672K | 454MS | C++ | 1289B | 2013-07-31 09:38:56 |
//Accepted 15672 KB 469 ms C++ 1227 B 2013-07-31 09:37:25
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 2000+10;
const int INF = maxn*7; char map[maxn][10];
int w[maxn][maxn];
int d[maxn];
int vis[maxn];
int n; int dist(int st, int en)
{
int distance = 0;
for(int i = 0; i < 7; i++)
if(map[st][i] != map[en][i])
distance++;
return distance;
} int Prime()
{
int ans = 0;
for(int i = 1; i <= n; i++) d[i] = INF;
d[1] = 0;
memset(vis, 0, sizeof(vis)); for(int i = 1; i <= n; i++)
{
int x, m = INF;
for(int y = 1; y <= n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1; ans += d[x];
for(int y = 1; y <= n; y++) if(!vis[y])
d[y] = min(d[y], w[x][y]);
}
return ans;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break; for(int i = 1; i <= n; i++) scanf("%s", map[i]); for(int i = 1; i <= n; i++)
{
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(i,j);
w[j][i] = w[i][j];
}
} int ans = Prime();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}
POJ 1789 Truck History【最小生成树简单应用】的更多相关文章
- poj 1789 Truck History 最小生成树
点击打开链接 Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15235 Accepted: ...
- poj 1789 Truck History 最小生成树 prim 难度:0
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19122 Accepted: 7366 De ...
- Kuskal/Prim POJ 1789 Truck History
题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...
- POJ 1789 -- Truck History(Prim)
POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...
- poj 1789 Truck History
题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...
- POJ 1789 Truck History (最小生成树)
Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...
- poj 1789 Truck History【最小生成树prime】
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 21518 Accepted: 8367 De ...
- POJ 1789 Truck History (Kruskal)
题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...
- POJ 1789 Truck History (Kruskal 最小生成树)
题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...
随机推荐
- Vue 状态管理 Vuex
1.概述 Vuex作为插件,管理和维护整个项目的组件状态. 2.安装vuex cnpm i --save vuex 3.vuex使用 github地址:https://github.com/MengF ...
- Excle数组用法
现在有如下需求:需要将行与列进行乘积,并将结果录入到对应单元格 [需求展示] 面对上面这样的表格,你会怎么处理呢?一个个乘积后录入吗?还是使用公式一行行操作? [解决办法] 这种问题,使用数组是最好解 ...
- webpack 环境搭建基础框架
一.安装babel相关 1,安装依赖 cnpm i -D babel-core babel-loader babel-preset-env babel-preset-stage- babel-plug ...
- 统计MSSQL数据库中所有表记录的数量
SELECT a.name as '表名', b.rows as '记录数' FROM sysobjects AS aINNER JOIN sysindexes AS b ON a.id = b.id ...
- APP IONIC3 angular4
https://golb.hplar.ch/p/Hot-deploy-updates-with-the-cordova-hot-code-push-pluginnpm install @angular ...
- Atitit。监听键盘上下左右方向键事件java js jquery c#.net
Atitit.监听键盘上下左右方向键事件java js jquery c#.net 1. Keyword1 2. 通用的实现流程1 3. Js的实现1 3.1. Bind control ,eve ...
- TFS中如何排除Nuget的Packages文件夹
在项目的解决方案下新增.tfignore文件.文件内容如下: \packages 在项目的解决方案下新增.nuget文件夹,并新增Nuget.config文件,文件内容如下: <?xml ver ...
- waterfall.js
jq-waterfall是一款仿Pinterest网站的响应式无限动态加载图片瀑布流特效jQuery插件.该瀑布流特效使用ajax调用来动态加载图片,达到无限加载的效果.它使用简单,兼容性好,值得推荐 ...
- Boolean 转 string
boolean b=false; String b= String.valueOf(b);
- PLSQL配置数据库的方式
1.直接连接的方式 2.修改客户端D:\app\Administrator\product\11.2.0\client_1\network\admin\tnsnames.ora文件的方式. ora ...