You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.

We will ask you to perfrom some instructions of the following form:

  • DIST a b : ask for the distance between node a and node b
    or
  • KTH a b k : ask for the k-th node on the path from node a to node b

Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2

Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

Input

The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000)
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
  • The next lines contain instructions "DIST a b" or "KTH a b k"
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "DIST" or "KTH" operation, write one integer representing its result.

Print one blank line after each test.

Example

Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3

看到树上两点距离很容易想到LCA,
对于第K个点我们同样可以倍增解决;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 9999973;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int u, v, w, nxt;
}e[maxn];
int head[maxn];
int tot;
int n;
int dis[maxn], dep[maxn];
int fa[maxn][20];
void init() {
ms(e); ms(head); tot = 0; ms(dis); ms(dep);
ms(fa);
} void addedge(int u, int v, int w) {
e[++tot].u = u; e[tot].v = v; e[tot].nxt = head[u]; e[tot].w = w;
head[u] = tot;
} void dfs(int rt) {
for (int i = 1; i <= (int)log(n) / log(2) + 1; i++)
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
for (int i = head[rt]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa[rt][0])continue;
fa[v][0] = rt; dep[v] = dep[rt] + 1;
dis[v] = dis[rt] + e[i].w;
dfs(v);
}
} int LCA(int x, int y) {
if (dep[x] > dep[y])swap(x, y);
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (dep[fa[y][i]] >= dep[x])y = fa[y][i];
}
if (x == y)return x;
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (fa[x][i] != fa[y][i]) {
x = fa[x][i]; y = fa[y][i];
}
}
return fa[x][0];
} int main()
{
// ios::sync_with_stdio(0);
int T = rd();
while (T--) {
n = rd();
init();
for (int i = 1; i < n; i++) {
int u = rd(), v = rd(), w = rd();
addedge(u, v, w); addedge(v, u, w);
}
dfs(1);
char op[20];
while (rdstr(op) != EOF && op[1] != 'O') {
if (op[1] == 'I') {
int u = rd(), v = rd();
// cout << dis[u] << ' ' << dis[v] << ' ' << dis[LCA(u, v)] << endl;
printf("%d\n", dis[u] + dis[v] - 2 * dis[LCA(u, v)]);
}
else {
int u = rd(), v = rd(), k = rd();
int root = LCA(u, v);
int ans;
if (dep[u] - dep[root] + 1 >= k) {
ans = dep[u] - k + 1;
int i;
for (i = 0; (1 << i) <= dep[u]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[u] - (1 << j) >= ans)u = fa[u][j];
}
printf("%d\n", u);
}
else {
ans = dep[root] + k - (dep[u] - dep[root] + 1);
int i;
for (i = 0; (1 << i) <= dep[v]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[v] - (1 << j) >= ans)v = fa[v][j];
}
printf("%d\n", v);
}
}
}
}
return 0;
}

Query on a tree II 倍增LCA的更多相关文章

  1. spoj 913 Query on a tree II (倍增lca)

    Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...

  2. 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  3. LCA SP913 QTREE2 - Query on a tree II

    SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...

  4. [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】

    题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...

  5. SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)

    COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from  ...

  6. SPOJ Query on a tree II (树剖||倍增LCA)(占位)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  7. LCA【SP913】Qtree - Query on a tree II

    Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...

  8. QTREE2 spoj 913. Query on a tree II 经典的倍增思想

    QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...

  9. SPOJ913 Query on a tree II

    Time Limit: 433MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Description You are g ...

随机推荐

  1. 尝试在centos5下运行phantomjs2

    在redhat5上运行plantomjs 2,出现如下错误 bin/phantomjs: /lib64/libz.so.1: no version information available (req ...

  2. JS中使用正则表达式

  3. java基础知识(三)之数组

    声明数组: 语法:数据类型[ ] 数组名://例:int[ ] scores;  或者 数据类型 数组名[ ]://例:int scores[ ];分配空间 语法:数组名 = new 数据类型 [ 数 ...

  4. 数论Keynote

    [同余] 1.整数a,b对模m同余的充分与必要条件是m|(a-b),即a=b+mt,t是整数. 2.性质丁.若a1=b1(mod m),a2=b2(mod m),则(a1+a2)=(b1+b2)(mo ...

  5. 转-使用wifi调试程序

    转自:http://www.cnblogs.com/sunzhenxing19860608/archive/2011/07/14/2106492.html 数据线丢了,不想花钱去买,在网上看了看,an ...

  6. qt数据库有效插件为空的情况

    打了一周的环境,从ubuntu到win7,搭建环境的时间比写代码的时间都多.先简单的介绍一下我搭建的环境不是纯QT环境,是一个芬兰的软件开发商开发出来的SDK里面完全融合qt,其中qt是以单独的目录存 ...

  7. 安装CentOS 6网络配置问题

    安装CentOS 6网络配置问题 今天决定把家中的CentOS从5升级至6.但安装完CentOS 6.2之后发现eth0没有像往常一样通过DHCP自动获取IP.打开“/etc/sysconfig/ne ...

  8. Monkey测试异常信息解读

    查看包名 1.cmd 下面输入 adb locat > D:\test.txt 2.ctrl+c 停掉刚刚 1 运行的进程 3.打开test.txt文件--搜索  Displayed  对应的内 ...

  9. Alpha冲刺(二)

    Information: 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 学习并配置了ssm框架(用于前后端交 ...

  10. tornado设置cookie过期时间(expires time)

    具体的tornado设置过期时间的东西, 我也是查资料才发现的, 现在就贴代码吧 用户登录之后, 设置cookie, 我使用set_secure_cookie的, 它默认是有个30天的过期时间, 导致 ...