Query on a tree II 倍增LCA
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
- DIST a b : ask for the distance between node a and node b
or - KTH a b k : ask for the k-th node on the path from node a to node b
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
Input
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000)
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
- The next lines contain instructions "DIST a b" or "KTH a b k"
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Example
Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3
看到树上两点距离很容易想到LCA,
对于第K个点我们同样可以倍增解决;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 9999973;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int u, v, w, nxt;
}e[maxn];
int head[maxn];
int tot;
int n;
int dis[maxn], dep[maxn];
int fa[maxn][20];
void init() {
ms(e); ms(head); tot = 0; ms(dis); ms(dep);
ms(fa);
} void addedge(int u, int v, int w) {
e[++tot].u = u; e[tot].v = v; e[tot].nxt = head[u]; e[tot].w = w;
head[u] = tot;
} void dfs(int rt) {
for (int i = 1; i <= (int)log(n) / log(2) + 1; i++)
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
for (int i = head[rt]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa[rt][0])continue;
fa[v][0] = rt; dep[v] = dep[rt] + 1;
dis[v] = dis[rt] + e[i].w;
dfs(v);
}
} int LCA(int x, int y) {
if (dep[x] > dep[y])swap(x, y);
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (dep[fa[y][i]] >= dep[x])y = fa[y][i];
}
if (x == y)return x;
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (fa[x][i] != fa[y][i]) {
x = fa[x][i]; y = fa[y][i];
}
}
return fa[x][0];
} int main()
{
// ios::sync_with_stdio(0);
int T = rd();
while (T--) {
n = rd();
init();
for (int i = 1; i < n; i++) {
int u = rd(), v = rd(), w = rd();
addedge(u, v, w); addedge(v, u, w);
}
dfs(1);
char op[20];
while (rdstr(op) != EOF && op[1] != 'O') {
if (op[1] == 'I') {
int u = rd(), v = rd();
// cout << dis[u] << ' ' << dis[v] << ' ' << dis[LCA(u, v)] << endl;
printf("%d\n", dis[u] + dis[v] - 2 * dis[LCA(u, v)]);
}
else {
int u = rd(), v = rd(), k = rd();
int root = LCA(u, v);
int ans;
if (dep[u] - dep[root] + 1 >= k) {
ans = dep[u] - k + 1;
int i;
for (i = 0; (1 << i) <= dep[u]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[u] - (1 << j) >= ans)u = fa[u][j];
}
printf("%d\n", u);
}
else {
ans = dep[root] + k - (dep[u] - dep[root] + 1);
int i;
for (i = 0; (1 << i) <= dep[v]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[v] - (1 << j) >= ans)v = fa[v][j];
}
printf("%d\n", v);
}
}
}
}
return 0;
}
Query on a tree II 倍增LCA的更多相关文章
- spoj 913 Query on a tree II (倍增lca)
Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA SP913 QTREE2 - Query on a tree II
SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...
- [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】
题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- SPOJ Query on a tree II (树剖||倍增LCA)(占位)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA【SP913】Qtree - Query on a tree II
Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...
- QTREE2 spoj 913. Query on a tree II 经典的倍增思想
QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...
- SPOJ913 Query on a tree II
Time Limit: 433MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- MySQL(数据库)
数据库概念: 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库在实际应用中会遇到各式各样的数据库如nosql非关系数据库(memcached,redis,mangodb),RDBM ...
- json转字符串 —— jsonObj.toJSONString()与JSON.stringify(jsonObj)
ar people = { "programmers": [{ "firstName": "Brett", "lastName&q ...
- 用插件NPOI读写excel
1.用插件NPOIusing NPOI.SS.UserModel;using NPOI.XSSF.UserModel;using NPOI.HSSF.UserModel; public class E ...
- Hyperledger Fabric源码解析
Hyperledger Fabric开源于2015年12月,截至2018年2月初有185个公司/组织成员加入.最初由IBM和DAH的工程师贡献,现在约有70名的代码贡献者,4000+代码提交,代码行数 ...
- spark源码阅读之network(2)
在上节的解读中发现spark的源码中大量使用netty的buffer部分的api,该节将看到netty核心的一些api,比如channel: 在Netty里,Channel是通讯的载体(网络套接字或组 ...
- sql修改排序规则,区分大小
alter database 数据库 COLLATE Chinese_PRC_CS_AS 修改排序规则,改成大小写敏感的排序规则 如果只修改一个表,用alter t ...
- bootstrap导航菜单
<!DOCTYPE html><html lang="zh-cn"><head><meta charset="utf-8&quo ...
- 现代C++学习笔记之一资料篇(C++ 11)
最近看网上一些开源的源代码,发现尽多不认识的符号,好吧.开始学习新的C++. C++经典书籍 C++ Primer,第五版开始有了对C++ 11的讲解 C++ Primer Plus,第六版有对C++ ...
- css总结1:position定位:absolute/relative/fixed
1 [Positioning(定位)] Positioning作用:指定了元素的定位类型.position包括四个值:static,relative,fixed,absolute. css定位解析:元 ...
- 正确理解WPF中的TemplatedParent (转贴)
http://blog.csdn.net/idebian/article/details/8761388 (注:Logical Tree中文称为逻辑树,Visual Tree中文称为可视化树或者视觉树 ...