$ \color{#0066ff}{ 题目描述 }$

\(\color{#0066ff}{输入格式}\)

文件中以一行的形式存放一个正整数 n , n ≤ 20 。

\(\color{#0066ff}{输出格式}\)

以一行的形式输出问题的解 s (解的位数不超过 200 位)。

\(\color{#0066ff}{输入样例}\)

1

2

\(\color{#0066ff}{输出样例}\)

2

4

\(\color{#0066ff}{数据范围与提示}\)

none

\(\color{#0066ff}{题解}\)

显然直接上Polya

不难发现有6种置换

旋转0,120,240度,还有三种对称轴的翻转

(以下图片均来自--------lzxkj)

对于旋转来说,肯定是三个一循环,但是会存在下面的情况

所以答案就是\(x=\lceil \frac {\frac {n*(n+1)}{2}}{3}\rceil=\lceil \frac {n*(n+1)}{6}\rceil\)

注意,旋转0度是\(y=\frac{n*(n + 1)}{2}\)

翻转,中间对称的不变,总共\(\lceil \frac n 2 \rceil\)个,于是方案为\(z=\frac{\frac{n*(n+1)}{2}-\lceil \frac{n}{2}\rceil}{2}+\lceil \frac{n}{2}\rceil=\frac{1}{2}(\frac{n*(n+1)}{2}+\lceil \frac{n}{2}\rceil)\)

因此\(ans=\frac{2^y+2*2^x+3*2^z}{6}\)

显然并没有取模

直接上Python!

import math
n = int(input())
tot = n * (n + 1) >> 1;
x = tot
y = math.ceil(n * (n + 1) / 6)
z = (tot + math.ceil(n / 2)) >> 1;
ans = (2 ** x + 2 * 2 ** y + 3 * 2 ** z) // 6;
print(ans)

P2561 [AHOI2002]黑白瓷砖的更多相关文章

  1. [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)

    小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...

  2. 洛谷——P2556 [AHOI2002]黑白图像压缩

    P2556 [AHOI2002]黑白图像压缩 题目描述 选修基础生物基因学的时候, 小可可在家里做了一次图像学试验. 她知道:整个图像其实就是若干个图像点(称作像素)的序列,假定序列中像素的个数总是 ...

  3. 洛谷P2556 [AHOI2002] 黑白图像压缩 [模拟]

    题目传送门 黑白图像压缩 题目描述 选修基础生物基因学的时候, 小可可在家里做了一次图像学试验. 她知道:整个图像其实就是若干个图像点(称作像素)的序列,假定序列中像素的个数总是 8 的倍数, 于是每 ...

  4. LuoguP2556 [AHOI2002]黑白图像压缩 题解

    Content 题目描述太过于繁琐而无法简化,请前往原题面查看. 数据范围:\(1\leqslant n\leqslant 8\times 10^4\). Solution & Code 一个 ...

  5. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  6. C语言版flappy bird黑白框游戏

    在此记录下本人在大一暑假,2014.6~8这段时间复习C语言,随手编的一个模仿之前很火热的小游戏----flappy bird.代码bug基本被我找光了,如果有哪位兄弟找到其他的就帮我留言下吧,谢谢了 ...

  7. 课程设计 --- 黑白棋中的 AI

    原文链接:https://www.dreamwings.cn/reversi/3013.html 到了考试周了佯,可是偏偏这个时候迎来了很多很多的课程设计,幸好教授把C语言的课程设计提前发出了,不然都 ...

  8. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  9. Android自动化压力测试之Monkey Test Android常见的错误类型及黑白名单的使用方法(四)

    Android常见的错误类型有两种 1.ANR类型 1)在5秒内没有响应输入的事件(例如,按键按下,屏幕触摸) 2)BroadcastReceiver在10秒内没有执行完毕 2.Crash类型 1)异 ...

随机推荐

  1. VS2010调用halcon的时候出现试图加载格式不正确的程序(this.hWindowControl1 = new HalconDotNet.HWindowControl();)

    [重要错误修改] /// <summary> /// 设计器支持所需的方法 - 不要 /// 使用代码编辑器修改此方法的内容. /// </summary> private v ...

  2. JAVA 用axis1 调用.NET的web service

    1.去官网下载axis的jar包,我下的是1.4版本的 http://axis.apache.org/axis/java/releases.html 2.JAVA 代码: public void my ...

  3. axis调用webservice客户端开发

    第一步:wsdl2Java.bat文件编写 Axis_Lib表示依赖的jar包路径 Output_Path表示生成的class路径 Package包名 还需要手动更改 -p %Package%表示we ...

  4. 调用DLL的2种方式

    [调用DLL的2种方式] DLL在生成的时候会有dll.lib2个文件,另外包含相应的.h. 1.静态方式,通过lib来引用dll,以及引入.h. 2.只通过dll来使用,前提是知道内部的函数符号.

  5. Gym - 101128H:Sheldon Numbers

    题意 给你两个整数X和Y 问你在区间[X,Y]中,有多少数字的二进制满足ABAB或者A这种形式.A是某个数量的1,B是某个数量的0. 分析 因为数据规模很大,直接枚举x和y之间的数字然后判断会超时.所 ...

  6. 【bzoj1602】[Usaco2008 Oct]牧场行走

    1602: [Usaco2008 Oct]牧场行走 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1793  Solved: 935[Submit][St ...

  7. 内存cache使用的场景

    Q.业务场景内为什么要使用内存cache? A.为了利用内存cache的优点, 解决业务场景内的缺陷 Q.内存cache的优点和缺点 A.优点: 内存读写速度比磁盘块 缺点: 内存空间有限, 内存单价 ...

  8. opennebula kvm 创建VM oned报错日志

    Thu Jul :: [ReM][D]: Req: UID: VirtualMachineDeploy result SUCCESS, Thu Jul :: [TM][D]: Message rece ...

  9. 面试题:SSH项目总结 !=!=未看 没用

    阿玻罗软件(上海)有限公司已经两年了.中国银行营销系统,到民生银行小微信贷工厂建设.再到交通银行ioffice移动平台项目.以前所学的SSH好多都用不上 公司的框架.都是负责项目的贷款查找模块开发和测 ...

  10. ROS源码解读(二)--全局路径规划

    博客转载自:https://blog.csdn.net/xmy306538517/article/details/79032324 ROS中,机器人全局路径规划默认使用的是navfn包 ,move_b ...