个人心得:数位dp处理起来是真的麻烦,本来动态规划就够头疼的了,菜的一批。

来看这个题目吧,题目在下面。

把题目变成可以求得就是求前n个数中1-n*9的情况的总和,所以用dp【i】【j】,表示前i个数中和为j的个数。

状态转移方程就是

dp[i][j]=dp[i-1][j-k]  0=<k<=9;

但是后面要注意前导为0的情况所以总和ans=(dp[i][j]-dp[i-1][j])*dp[i][j](后面N段不需要考虑前导为0的情况,前面前导为0的情况就是前n-1位中和为j的值)

脑瓜子还是不行呀!!!数位dp看了基本绕路走。。。。

1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。
Input
输入N(1<= N <= 1000)
Output
输出幸运号码的数量 Mod 10^9 + 7
Input示例
1
Output示例
9
 #include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<stack>
#include<set>
#include<queue>
#include<algorithm>
using namespace std;
const long long mod=;
long long dp[][];
int main()
{ memset(dp,,sizeof(dp));
dp[][]=;
int i,n;
cin>>n;
for(i=;i<;i++)
dp[][i]=;
for(i=;i<=n;i++)
for(int j=;j<=*i;j++){
for(int k=;k<=;k++)
{
if(j>=k)
dp[i][j]=(dp[i][j]+dp[i-][j-k])%mod;
}
}
long long ans=;
for(i=;i<=n*;i++)
ans=(ans+dp[n][i]*(dp[n][i]-dp[n-][i]))%mod;
cout<<ans<<endl;
return ;
}

幸运数字(数位dp)的更多相关文章

  1. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

  2. 牛客小白月赛8 - E - 诡异数字 数位DP

    牛客小白月赛8 - E - 诡异数字 题意: 求区间中,满足限制条件的数字的个数. 限制条件就是某些数字不能连续出现几次. 思路: 比较裸的数位DP, DP数组开一个dp[len][x][cnt] 表 ...

  3. SCUT - 289 - 小O的数字 - 数位dp

    https://scut.online/p/289 一个水到飞起的模板数位dp. #include<bits/stdc++.h> using namespace std; typedef ...

  4. 1043 幸运号码 数位DP

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043 设dp[i][j]表示前i位数中,i位数的和为j时的所有情况. 转 ...

  5. 51nod 1043 幸运号码(数位dp)

    题目链接:51nod 1043 幸运号码 题解:dp[i][j]表示 i 个数和为 j 的总数(包含0开头情况) dp[i][j] = dp[i-1][j-k] i & 1 :这里用滚动数组节 ...

  6. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  7. HDU 4352 XHXJ's LIS HDU(数位DP)

    HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...

  8. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  9. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

随机推荐

  1. ArchiMate进行业务架构建模的参考

    业务服务视图 业务渠道视图 业务服务实现视图 业务角色协作视图 业务流程协作视图 业务流程视图 业务对象视图 产品化业务服务视图 分层视图 除了以上内容,在TOGAF中完整的推荐视图是 在ArchiM ...

  2. “中兴捧月”比赛之——二叉查找树(BST)树的最短路径Java求解

    问题描述: BST树,又称二叉查找树,求其到所有叶子节点路径的最小值 测试用例一:  10 5 20 返回15: 测试用例二: 100 20 70 110 120 10 null null 89 nu ...

  3. qt的udp的初步使用(转)

    该程序实现的功能是:局域网内,每个用户登录到聊天软件,则软件界面的右端可以显示在线用户列表,分别显示的是用户名,主机名,ip地址.软件左边那大块是聊天内容显示界面,这里局域网相当于qq中的qq群,即群 ...

  4. python 运行报错 Process finished with exit code -1073741819 (0xC0000005)

    发现是由于openpyxl模块导致的,去掉这个模块的内容就能运行,import openpyxl就运行不起来, 将openpyxl卸载了重装, 以及更换了不同的openpyxl版本,都不行,还是运行不 ...

  5. Windos Server 2008 Backup 安装使用

    系统环境:Windos 2008 R2 x64 实施方案:备份系统 完全备份,每周备份一次,备份文件映射到文件服务器. 安装备份工具 使用Windos Sserver Backup 做备份 设置每周备 ...

  6. MySQL数据库基本操作(二)

    表结构操作 ( ALTER TABLE) 添加单列: ALTER TABLE tb1_name ADD [COLUNM] col_name column_definition [FIRST|AFTER ...

  7. 在各种Linux发行版上安装Git的教程

    Git是一个流行的开源版本控制系统(VCS),最初是为Linux环境开发的.跟CVS或者SVN这些版本控制系统不同的是,Git的版本控制被认为是“分布式的”,某种意义上,git的本地工作目录可以作为一 ...

  8. JMeter学习(十二)JMeter学习参数化User Defined Variables与User Parameters

    相同点:二者都是进行参数化的. 一.User Defined Variables 1.添加方法:选择“线程组”,右键点击添加-Config Element-User Defined Variables ...

  9. linux下pycharm的使用

    百度搜索pycharm 然后打开pycharm的官网 然后在官网首页点击down   如果使用的是Linux系统,那么默认已经选择Linux版本 左边的down是全功能的IDE和WEB扩展,属于商业版 ...

  10. Oracle 数据库 INTERVAL DAY TO SECOND类型的使用

    INTERVAL DAY TO SECOND类型可以用来存储单位为天和秒的时间间隔.下面这条语句创建一个名为promotions的表,用来存储促销信息.promotions表包含了一个INTERVAL ...