Vision-Based Positioning for Internet-of-Vehicles

Introduction

Ego-positioning aims at locating an object in a global coordinate system based on its sensor inputs. With the growth of mobile or wearable devices, accurate positioning has be- come increasingly important. Unlike indoor positioning, considerably less efforts have been put into developing high-accuracy ego-positioning systems for outdoor environments. Global Positioning System (GPS) is the most widely used technology implemented in vehicles. However, the precision of GPS sensors is approximately 3 to 20 meters, which is not sufficient for distinguishing the traffic lanes and highway lane levels critical for intelligent vehicles. In addition, the existing GPS systems do not work properly in urban areas where signals are obstructed by high rise buildings. Although several positioning methods based on expensive sensors, such as radar sensors and Velodyne 3D laser scanners, can achieve high accuracy, they are not widely adopted because of cost issues. Hence, it is important to develop accurate ready-to-deploy IoV approaches for outdoor environments.

We presents an algorithm for ego-positioning by using a low-cost monocular camera for systems based on the Internet-of-Vehicles (IoV). To reduce the computational and memory requirements, as well as the communication load, we tackle the model compression task as a weighted k-cover problem for better preserving the critical structures. For real-world vision-based positioning applications, we consider the issue of large scene changes and introduce a model update algorithm to address this problem. A large positioning dataset containing data collected for more than a month, 106 sessions, and 14,275 images is constructed. Extensive experimental results show that sub- meter accuracy can be achieved by the proposed ego-positioning algorithm, which outperforms existing vision-based approaches.

Overview of the algorithm

(a) training phase: images from passing vehicles are uploaded to a cloud server for model construction and compression;

(b) ego-positioning phase: SIFT features from images acquired on vehicles are matched against 3D models previously constructed for ego-positioning. In addition, the newly acquired images are used to update 3D models.

Result

Video on Youtube:http://www.youtube.com/embed/ZLjHGcqhbYA

Dataset

http://www.clarenceliang.com/dataset

Related Publications

[1]   Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning for Internet-of-Vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2017.

[2]   Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning with Sub-meter Accuracy for Internet-of-Vehicles,” the 28th IPPR Conference on Computer Vision, Graphics, and Image Processing, Aug., 2015. (Best Paper Award)

Vision-Based Positioning for Internet-of-Vehicles的更多相关文章

  1. VIPS: a VIsion based Page Segmentation Algorithm

    VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...

  2. Computer English Notes

    Chapter 1 : About Computer Answer the following - Abbreviation LBS - Location-Based Services HTML - ...

  3. REST is not the Best for Micro-Services GRPC and Docker makes a compelling case

    原文:https://hackernoon.com/rest-in-peace-grpc-for-micro-service-and-grpc-for-the-web-a-how-to-908cc05 ...

  4. 【AR实验室】ARToolKit之概述篇

    0x00 - 前言 我从去年就开始对AR(Augmented Reality)技术比较关注,但是去年AR行业一直处于偶尔发声的状态,丝毫没有其"异姓同名"的兄弟VR(Virtual ...

  5. Socket网络编程一

    1.Socket参数介绍 A network socket is an endpoint of a connection across a computer network. Today, most ...

  6. Python之路,Day8 - Python基础 面向对象高级进阶与socket基础

    类的成员 类的成员可以分为三大类:字段.方法和属性 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段.而其他的成员,则都是保存在类中,即:无论对象的 ...

  7. Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)

    本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...

  8. python走起之第八话

    1. Socket介绍 概念 A network socket is an endpoint of a connection across a computer network. Today, mos ...

  9. Python学习路程day8

    Socket语法及相关 socket概念 A network socket is an endpoint of a connection across a computer network. Toda ...

  10. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

随机推荐

  1. 网站加入QQ聊天链接

    有时候我们的网站需要加入客服聊天功能,实现方式各不相同同,对于流量不大的网站,可以加入qq聊天的链接,点击链接,会打开本地qq的聊天窗口, 和指定的人会话.实现方式很简单,就是一个<a>标 ...

  2. 从零实现一个简易jQuery框架之一—jQuery框架概述

    我们知道,不管学习任何一门框架,了解其设计的理念.目的.总体的结构及核心特性对我们使用和后续的深入理解框架都是有很大的帮助的.因此在这里先梳理一下本人对jQuery框架的一些理解. 设计目的(为什么要 ...

  3. [转]浅谈微信小程序

    本文转自:http://www.cnblogs.com/liziyou/p/6340159.html 微信小程序 1.什么是小程序 小程序是指微信公众号平台小程序,小程序可以在微信内被便捷的获取和转播 ...

  4. [转]ASP.NET Core 中文文档 第四章 MVC(4.3)过滤器

    本文转自:http://www.cnblogs.com/dotNETCoreSG/p/aspnetcore-4_4_3-filters.html 原文:Filters 作者:Steve Smith 翻 ...

  5. 《C#高效编程》读书笔记02-用运行时常量(readonly)而不是编译期常量(const)

    C#有两种类型的常量:编译期常量和运行时常量.两者有截然不同的行为,使用不当的话,会造成性能问题,如果没法确定,则使用慢点,但能保证正确的运行时常量. 运行时常量使用readonly关键字声明,编译期 ...

  6. iOS instruments之ui automation的简单使用(高手绕道)

    最近使用了几次instruments中的automation工具,现记录下automation的简单使用方法,希望对没接触过自动化测试又有需求的人有所帮助.  UI 自动测试是iOS 中重要的附加功能 ...

  7. 【代码笔记】Java基础:Java的方法和类

    面向过程与面向对象都是我们编程中,编写程序的一种思维方式.例如:公司打扫卫生(擦玻璃.扫地.拖地.倒垃圾等), 按照面向过程的程序设计方式会思考“打扫卫生我该怎么做,然后一件件的完成”,最后把公司卫生 ...

  8. JS基础学习——对象

    JS基础学习--对象 什么是对象 对象object是JS的一种基本数据类型,除此之外还包括的基本数据类型有string.number.boolean.null.undefined.与其他数据类型不同的 ...

  9. JS自定义手机端H5键盘

    在输入车牌号的时候,因为很多车牌号都是数字字母混合排列的,所以如果用输入法输入就需要频繁切换数字跟字母,有点麻烦. 在这里我们就用自定义一个弹出框代替键盘来使用. 1.首先,要禁止掉文本框弹出输入法, ...

  10. 前端小课堂 js:what is the function?

    js 函数: 概念:函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块. 说白了就是响应用户操作所执行的代码,通过js事件触发,然后调用执行函数里代码的操作. 比如常见的用户点击事件,用户点击 ...