Vision-Based Positioning for Internet-of-Vehicles

Introduction

Ego-positioning aims at locating an object in a global coordinate system based on its sensor inputs. With the growth of mobile or wearable devices, accurate positioning has be- come increasingly important. Unlike indoor positioning, considerably less efforts have been put into developing high-accuracy ego-positioning systems for outdoor environments. Global Positioning System (GPS) is the most widely used technology implemented in vehicles. However, the precision of GPS sensors is approximately 3 to 20 meters, which is not sufficient for distinguishing the traffic lanes and highway lane levels critical for intelligent vehicles. In addition, the existing GPS systems do not work properly in urban areas where signals are obstructed by high rise buildings. Although several positioning methods based on expensive sensors, such as radar sensors and Velodyne 3D laser scanners, can achieve high accuracy, they are not widely adopted because of cost issues. Hence, it is important to develop accurate ready-to-deploy IoV approaches for outdoor environments.

We presents an algorithm for ego-positioning by using a low-cost monocular camera for systems based on the Internet-of-Vehicles (IoV). To reduce the computational and memory requirements, as well as the communication load, we tackle the model compression task as a weighted k-cover problem for better preserving the critical structures. For real-world vision-based positioning applications, we consider the issue of large scene changes and introduce a model update algorithm to address this problem. A large positioning dataset containing data collected for more than a month, 106 sessions, and 14,275 images is constructed. Extensive experimental results show that sub- meter accuracy can be achieved by the proposed ego-positioning algorithm, which outperforms existing vision-based approaches.

Overview of the algorithm

(a) training phase: images from passing vehicles are uploaded to a cloud server for model construction and compression;

(b) ego-positioning phase: SIFT features from images acquired on vehicles are matched against 3D models previously constructed for ego-positioning. In addition, the newly acquired images are used to update 3D models.

Result

Video on Youtube:http://www.youtube.com/embed/ZLjHGcqhbYA

Dataset

http://www.clarenceliang.com/dataset

Related Publications

[1]   Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning for Internet-of-Vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2017.

[2]   Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning with Sub-meter Accuracy for Internet-of-Vehicles,” the 28th IPPR Conference on Computer Vision, Graphics, and Image Processing, Aug., 2015. (Best Paper Award)

Vision-Based Positioning for Internet-of-Vehicles的更多相关文章

  1. VIPS: a VIsion based Page Segmentation Algorithm

    VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...

  2. Computer English Notes

    Chapter 1 : About Computer Answer the following - Abbreviation LBS - Location-Based Services HTML - ...

  3. REST is not the Best for Micro-Services GRPC and Docker makes a compelling case

    原文:https://hackernoon.com/rest-in-peace-grpc-for-micro-service-and-grpc-for-the-web-a-how-to-908cc05 ...

  4. 【AR实验室】ARToolKit之概述篇

    0x00 - 前言 我从去年就开始对AR(Augmented Reality)技术比较关注,但是去年AR行业一直处于偶尔发声的状态,丝毫没有其"异姓同名"的兄弟VR(Virtual ...

  5. Socket网络编程一

    1.Socket参数介绍 A network socket is an endpoint of a connection across a computer network. Today, most ...

  6. Python之路,Day8 - Python基础 面向对象高级进阶与socket基础

    类的成员 类的成员可以分为三大类:字段.方法和属性 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段.而其他的成员,则都是保存在类中,即:无论对象的 ...

  7. Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)

    本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...

  8. python走起之第八话

    1. Socket介绍 概念 A network socket is an endpoint of a connection across a computer network. Today, mos ...

  9. Python学习路程day8

    Socket语法及相关 socket概念 A network socket is an endpoint of a connection across a computer network. Toda ...

  10. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

随机推荐

  1. 分享:JAVA和C# 3DES加密解密

    最近 一个项目.net 要调用JAVA的WEB SERVICE,数据采用3DES加密,涉及到两种语言3DES一致性的问题,下面分享一下,这里的KEY采用Base64编码,便用分发,因为Java的Byt ...

  2. Hbase到Solr同步常用操作

    Hbase到Solr同步常用操作 1. 整体流程 2. 常用操作 Hbase常用操作 Solr常用操作 hbase-index常用操作 3. 其他资料 Lily HBase Indexer使用整理 h ...

  3. FragmentActivity的简单使用

    如图是效果图 当  点击下面 不同 的按钮 进入 不同的界面 其中 要一个 主布局当做容器 , 和3个不同的 布局来对应下面的3个按钮界面 主程序的 代码和布局如下 import android.su ...

  4. std::string, std::wstring, wchar_t*, Platform::String^ 之间的相互转换

    最近做WinRT的项目,涉及到Platform::String^  和 std::string之间的转换,总结一下: (1)先给出源代码: std::wstring stows(std::string ...

  5. qt 创建线程

    http://www.cnblogs.com/xinxue/p/6840315.html Qt 之 QtConcurrent 本文以 Qt 中的 QtConcurrent::run() 函数为例,介绍 ...

  6. hibernate基础配置

    数据库表名和类名 一致 注解:可写可不写: XML:可写可不写: <class name="Student"> 不一致 注解:  public class Teache ...

  7. python大数据

    http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...

  8. C#操作CAD-读取和修改数据

    我们操作cad最主要的目的就是读取和修改或者删除数据,因为内容较多,在此我们先讲一下基础,后续慢慢讲解. 1.cad数据读取和修改前都要进行锁定操作,以避免一个文档被多个用户修改而发生冲突. Data ...

  9. day1 python 介绍、基本语法、流程控制

    请查看我的云笔记链接: http://note.youdao.com/noteshare?id=0ea7425d3e3669800cb0d73f7ec8865d&sub=D87B4BF820C ...

  10. May 31st 2017 Week 22nd Wednesday

    No great discovery was ever made without a bold guess. 没有大胆的猜测就没有伟大的发现. When our ancestors saw the b ...