Vision-Based Positioning for Internet-of-Vehicles
Vision-Based Positioning for Internet-of-Vehicles
Introduction
Ego-positioning aims at locating an object in a global coordinate system based on its sensor inputs. With the growth of mobile or wearable devices, accurate positioning has be- come increasingly important. Unlike indoor positioning, considerably less efforts have been put into developing high-accuracy ego-positioning systems for outdoor environments. Global Positioning System (GPS) is the most widely used technology implemented in vehicles. However, the precision of GPS sensors is approximately 3 to 20 meters, which is not sufficient for distinguishing the traffic lanes and highway lane levels critical for intelligent vehicles. In addition, the existing GPS systems do not work properly in urban areas where signals are obstructed by high rise buildings. Although several positioning methods based on expensive sensors, such as radar sensors and Velodyne 3D laser scanners, can achieve high accuracy, they are not widely adopted because of cost issues. Hence, it is important to develop accurate ready-to-deploy IoV approaches for outdoor environments.
We presents an algorithm for ego-positioning by using a low-cost monocular camera for systems based on the Internet-of-Vehicles (IoV). To reduce the computational and memory requirements, as well as the communication load, we tackle the model compression task as a weighted k-cover problem for better preserving the critical structures. For real-world vision-based positioning applications, we consider the issue of large scene changes and introduce a model update algorithm to address this problem. A large positioning dataset containing data collected for more than a month, 106 sessions, and 14,275 images is constructed. Extensive experimental results show that sub- meter accuracy can be achieved by the proposed ego-positioning algorithm, which outperforms existing vision-based approaches.
Overview of the algorithm
(a) training phase: images from passing vehicles are uploaded to a cloud server for model construction and compression;
(b) ego-positioning phase: SIFT features from images acquired on vehicles are matched against 3D models previously constructed for ego-positioning. In addition, the newly acquired images are used to update 3D models.
Result
Video on Youtube:http://www.youtube.com/embed/ZLjHGcqhbYA
Dataset
http://www.clarenceliang.com/dataset
Related Publications
[1] Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning for Internet-of-Vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2017.
[2] Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Ming-Hsuan Yang, Chu-Song Chen, and Yi-Ping Hung, “Vision-Based Positioning with Sub-meter Accuracy for Internet-of-Vehicles,” the 28th IPPR Conference on Computer Vision, Graphics, and Image Processing, Aug., 2015. (Best Paper Award)
Vision-Based Positioning for Internet-of-Vehicles的更多相关文章
- VIPS: a VIsion based Page Segmentation Algorithm
VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...
- Computer English Notes
Chapter 1 : About Computer Answer the following - Abbreviation LBS - Location-Based Services HTML - ...
- REST is not the Best for Micro-Services GRPC and Docker makes a compelling case
原文:https://hackernoon.com/rest-in-peace-grpc-for-micro-service-and-grpc-for-the-web-a-how-to-908cc05 ...
- 【AR实验室】ARToolKit之概述篇
0x00 - 前言 我从去年就开始对AR(Augmented Reality)技术比较关注,但是去年AR行业一直处于偶尔发声的状态,丝毫没有其"异姓同名"的兄弟VR(Virtual ...
- Socket网络编程一
1.Socket参数介绍 A network socket is an endpoint of a connection across a computer network. Today, most ...
- Python之路,Day8 - Python基础 面向对象高级进阶与socket基础
类的成员 类的成员可以分为三大类:字段.方法和属性 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段.而其他的成员,则都是保存在类中,即:无论对象的 ...
- Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)
本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...
- python走起之第八话
1. Socket介绍 概念 A network socket is an endpoint of a connection across a computer network. Today, mos ...
- Python学习路程day8
Socket语法及相关 socket概念 A network socket is an endpoint of a connection across a computer network. Toda ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
随机推荐
- vue中promise的使用
vue中promise的使用 promise是处理异步的利器,在之前的文章<ES6之promise>中,我详细介绍了promise的使用, 在文章<js动画实现&&回 ...
- 解决 command not found: express
需要先执行 sudo npm install -g express-generator 再安装 sudo npm install -g express 建立项目骨架 express -e xxx
- 转:JAVA线程池ThreadPoolExecutor与阻塞队列BlockingQueue
从Java5开始,Java提供了自己的线程池.每次只执行指定数量的线程,java.util.concurrent.ThreadPoolExecutor 就是这样的线程池.以下是我的学习过程. 首先是构 ...
- JavaScript函数和数组总结
JavaScript函数 1. 函数的定义 函数名称只能包含字母.数字.下划线或$,且不能以数字开头.定义时可用函数定义表达式或者函数声明语句. var f = function fact( ...
- Ajax的XMLHttpRequest对象
编写一个例子:从服务器取回一个Hello Ajax字符串. HTML: <input type="button" value="ajax提交" oncli ...
- TD不换行 nowrap属性
表格table的td单元格中,文字长了往往会撑开单元格,但是如果table都不够宽了,就换行了好像(不要较真其他情况,我只说会换行的情况).换行后的表格显得乱糟糟,不太好看,我不喜欢这样的换行.当然可 ...
- MySql存储引擎MyISAM和InnoDB的区别
1.MySQL默认采用的是MyISAM. 2.MyISAM不支持事务,而InnoDB支持.InnoDB的AUTOCOMMIT默认是打开的,即每条SQL语句会默认被封装成一个事务,自动提交,这样会影响速 ...
- DW网页制作,数学,数据库管理
数学(函数关系的建立) 函数关系:确定性现象之间的关系常常表现为函数关系,即一种现象的数量确定以后,另一种现象的数量也随之完全确定,表现为一种严格的函数关系. 如:记为y=f(x),其中x称为自变量, ...
- 简单Java程序向实用程序的过度:二进制文件的读写
File I/O中常见的文件读写: 1.字节流读写文本文件 FileInputStream; FileOutputStream; 2.字符流读写文本文件 FileReader; FileWriter; ...
- java几种常见的排序算法总结
/*************几种常见的排序算法总结***************************/ package paixu; public class PaiXu { final int ...