PostgreSQL里面给全文检索或者模糊查询加索引提速的时候,一般会有两个选项,一个是GIST类型,一个是GIN类型,官网给出的参考如下:

There are substantial performance differences between the two index types, so it is important to understand their characteristics.

A GiST index is lossy, meaning that the index may produce false matches, and it is necessary to check the actual table row to eliminate such false matches. (PostgreSQL does this automatically when needed.) GiST indexes are lossy because each document is represented in the index by a fixed-length signature. The signature is generated by hashing each word into a single bit in an n-bit string, with all these bits OR-ed together to produce an n-bit document signature. When two words hash to the same bit position there will be a false match. If all words in the query have matches (real or false) then the table row must be retrieved to see if the match is correct.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to be false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes. The likelihood of false matches depends on several factors, in particular the number of unique words, so using dictionaries to reduce this number is recommended.

GIN indexes are not lossy for standard queries, but their performance depends logarithmically on the number of unique words. (However, GIN indexes store only the words (lexemes) of tsvector values, and not their weight labels. Thus a table row recheck is needed when using a query that involves weights.)

In choosing which index type to use, GiST or GIN, consider these performance differences:

GIN index lookups are about three times faster than GiST

GIN indexes take about three times longer to build than GiST

GIN indexes are moderately slower to update than GiST indexes, but about 10 times slower if fast-update support was disabled (see Section 54.3.1 for details)

GIN indexes are two-to-three times larger than GiST indexes

As a rule of thumb, GIN indexes are best for static data because lookups are faster. For dynamic data, GiST indexes are faster to update. Specifically, GiST indexes are very good for dynamic data and fast if the number of unique words (lexemes) is under 100,000, while GIN indexes will handle 100,000+ lexemes better but are slower to update.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while GiST index build time is not sensitive to that parameter

参考:http://www.postgresql.org/docs/9.2/static/textsearch-indexes.html

PostgreSQL的索引选型的更多相关文章

  1. 浅谈PostgreSQL的索引

    1. 索引的特性 1.1 加快条件的检索的特性 当表数据量越来越大时查询速度会下降,在表的条件字段上使用索引,快速定位到可能满足条件的记录,不需要遍历所有记录. create table t(id i ...

  2. (转)浅谈PostgreSQL的索引

    1. 索引的特性 1.1 加快条件的检索的特性 当表数据量越来越大时查询速度会下降,在表的条件字段上使用索引,快速定位到可能满足条件的记录,不需要遍历所有记录. create table t(id i ...

  3. PostgreSQL的索引膨胀

    磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面:PostgreSQL内部结构与源代码研究索引页    回到顶级页面:PostgreSQL索引页 索引膨胀,主要是针对B-tree而言. 索引膨 ...

  4. PostgreSQL查看索引的使用情况

    查看某个表的索引使用情况 select relname, indexrelname, idx_scan, idx_tup_read, idx_tup_fetch from pg_stat_user_i ...

  5. PostgreSQL 分区索引演进

    PostgreSQL 分区表,操作性相当便捷. 但只能在创建时决定是否为分区表,并决定分区条件字段,普通表创建后,不能在修改为分区表. Note:通过其他方法也可转化为分区表. 和其他数据库一样,分区 ...

  6. postgresql gin索引使用

    由于属于老项目,postgresql使用版本9.6,主要解决‘%name%"查询无法使用索引问题.pg_trgm模块提供函数和操作符测定字母,数字,文本基于三元模型匹配的相似性, 还有支持快 ...

  7. PostGreSQL不同索引类型(btree & hash)的性能问题

    在关系型数据库调优中,查询语句涉及到的索引类型是不得不考虑的一个问题.不同的类型的索引可能会适用不同类型的业务场景.这里我们所说的索引类型指的是访问方法(Access Method),至于从其他维度区 ...

  8. postgresql逻辑结构--索引(六)

    一.索引简介 二.索引分类 三.创建索引 四.修改索引 五.删除索引

  9. postgresql —— 查看索引

    查索引 语句: SELECT tablename, indexname, indexdef FROM pg_indexes WHERE tablename = 'user_tbl' ORDER BY ...

随机推荐

  1. JAVA软件配置—环境变量

    环境Windows10,JDK,JRE1.8.0_102 鼠标右击左下角Windows图标,选择"系统"项: 点击"高级系统设置"——"环境变量&qu ...

  2. 【3】SpringMVC的Controller

    1SpringMvc的Controller是线程安全的吗? (1)由于是单例,tomcat的多线程环境访问,属性必须是不可变的,如果可变,会产生脏数据,线程不安全 2Spring的事务管理 (1)ao ...

  3. debezium 数据变更工具使用

    1.  作用 简单概述就是CDC(change data capture),实时数据分析领域用的比较多   2. 简单使用(基于官网的docker 说明)  备注: 测试没有使用守护进程模式为了方便测 ...

  4. FastAdmin 2018-05-26 更新时更新了 SQL 文件 关于 ROW_FORMAT=DYNAMIC 改为 ROW_FORMAT=COMPACT 问题

    FastAdmin 2018-05-26 更新时更新了 SQL 文件 关于 ROW_FORMAT=DYNAMIC 改为 ROW_FORMAT=COMPACT 问题 观查到 FastAdmin 在 20 ...

  5. rac ASM下最简单归档开启/关闭方法

    原创作品,出自 “深蓝的blog” 博客,深蓝的blog:http://blog.csdn.net/huangyanlong/article/details/47172639本次先来介绍一下在rac环 ...

  6. BZOJ3790:神奇项链

    浅谈\(Manacher\):https://www.cnblogs.com/AKMer/p/10431603.html 题目传送门:https://lydsy.com/JudgeOnline/pro ...

  7. hbase官方文档(转)

    FROM:http://www.just4e.com/hbase.html Apache HBase™ 参考指南  HBase 官方文档中文版 Copyright © 2012 Apache Soft ...

  8. windows下安装storm1.1.0并启动

    64位windows安装storm前需要先搞定zookeeper和python,所以下面我们3步走: 一.zookeeper 1.上https://zookeeper.apache.org/点击下方d ...

  9. IE兼容模式与非兼容模式下jq的写法

    1.  $("#LabelRepeatType").removeAttr("disabled");                $("#LabelF ...

  10. 2、通过HBase API进行开发

    一.将HBase的jar包及hbase-site.xml添加到IDE 1.到安装HBase集群的任意一台机器上找到HBase的安装目录,到lib目录下下载HBase需要的jar包,然后再到conf目录 ...