分析

第一个台阶  1
第二个台阶  11 2    //走两次1步或者走1次两步
第三个台阶  111 12 21 3 
第四个台阶  1111 112 121 211 22 13 31

思想:4阶台阶,第一次可以迈1步(还剩3台阶也就是f(3)可能)或者2步(还剩2台阶也就是f(2)可能)或者3步(还剩1台阶也就是f(1)可能)

f(n)=f(n-1)+f(n-2)+f(n-3)  第n个台阶的可能 = n-1台阶的可能+n-2台阶的可能+n-3台阶的可能

我这里采用了递归算法

//param x  台阶数目
int goadd(int x)
{
if (x == 1){
return 1;
}
else if (x == 2){
return 2;
}
else if (x == 3){
return 4;
}
else{
return goadd(x - 1) + goadd(x-2)+goadd(x-3);
} } void main()
{
printf("%d", goadd(5));
getchar(); } 转自:http://www.cnblogs.com/nfcm/p/6368058.html

n个台阶,每次都可以走一步,走两步,走三步,走到顶部一共有多少种可能的更多相关文章

  1. 有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法

    // n级台阶,求多少种跳法.cpp : Defines the entry point for the console application. // /* 思路: 如果只有一级台阶,n=1,很明显 ...

  2. python假设一段楼梯共 n(n>1)个台阶,小朋友一步最多能上 3 个台阶,那么小朋友上这段楼 梯一共有多少种方法

    我们先把前四节种数算出来(自己想是哪几类,如果你不会算,那就放弃写代码吧,干一些在街上卖肉夹馍的小生意,也挣得不少) 标号 1    2    3     4 种类 1    2    4     7 ...

  3. 等价于n*n的矩阵,填写0,1,要求每行每列的都有偶数个1 (没有1也是偶数个),问有多少种方法。

    #define N 4 /* * 公式: * f(n) = 2^((n - 1) ^2) */ int calWays(int n) { int mutiNum = (n - 1) * (n - 1) ...

  4. 有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完?

    有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完? 相关问题: (1)有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台 ...

  5. Git push 时每次都需要密码的疑惑

    2015.1.13更新: 在本地搭建Git服务器时,也是有每次操作需要密码的情况. 是因为每次做推送动作时,Git需要认证你是好人.所以需要密码. 可以在 /home/username/.ssh/au ...

  6. 为什么每个请求都要有用户名密码呢,那不是每次都要查询一下了,token,表示这个用户已经验证通过了,在token有效期内,只需要判断token是否有效就可以了

    为什么每个请求都要有用户名密码呢,那不是每次都要查询一下了,token,表示这个用户已经验证通过了,在token有效期内,只需要判断token是否有效就可以了

  7. LISTVIEW嵌套GRIDVIEW的一些处理(点击GRIDVIEW的条目,能够显示他在LISTVIEW中的位置)(对这篇文章的优化处理,不每次都new onItemClickListener)

    前几天写了点击GRIDVIEW的条目,能够显示他在LISTVIEW中的位置,当时的处理是在ListView的适配器里的GetView方法里每次都new GridView的onItemClickList ...

  8. git 设置不需要输入密码, 去除 fetch / pull 代码每次都需要输入密码的烦恼

    https方式每次都要输入密码,按照如下设置即可输入一次就不用再手输入密码的困扰而且又享受https带来的极速 设置记住密码(默认15分钟): git config --global credenti ...

  9. 从(0,0)到(m,n),每次走一步,只能向上或者向右走,有多少种路径走到(m,n)

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

随机推荐

  1. 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)

    点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...

  2. js 原生获取Class元素

    function getElementsByClassName(n) { var classElements = [] allElements = document.getElementsByTagN ...

  3. Angularjs实例4

    <!DOCTYPE html><html lang="zh-cn" ng-app=""><head><meta htt ...

  4. apache开启.htaccess及使用方法

    1 . 如何让的本地APACHE器.htaccess 如何让的本地APACHE呢?其实只要简朴修改一下apache的httpd.conf设置就让APACHE.htaccess开启了,来看看操作 打开h ...

  5. block与inline,inline和inline-block,块级和行内元素,行内替换和行内非替换元素

    block:块级元素默认display属性为block:无论块内内容有多少,总是占满一行: inline:行内元素默认display属性为inline:只占据块内的内容的大小,不会占满一整行: inl ...

  6. 由inline-block小例子引申出的一些问题,及IE6、IE7兼容性解决方案

    使用场景分析: 常见的对块与块之间的横向排列处理 对同级所有元素使用display:inline-block; , 之后块与块直接会产生间隙问题 解决办法: 给父级设 font-size:0; 别高兴 ...

  7. ZooKeeper下载安装(Windows版本)

    进入Apache ZooKeeper官方网站进行下载,https://zookeeper.apache.org/releases.html 这里我们选择zookeeper-3.4.12版本进行下载 百 ...

  8. 寻找AP数

    题目背景 正整数n是无穷的,但其中有些数有神奇的性质,我们给它个名字--AP数. 题目描述 对于一个数字i是AP数的充要条件是所有比它小的数的因数个数都没有i的因数个数多.比如6的因数是1 2 3 6 ...

  9. Asp.Net Core 使用Docker进行容器化部署(二)使用Nginx进行反向代理

    上一篇介绍了Asp.Net 程序在Docker中的部署,这篇介绍使用Nginx对Docker的实例进行反向代理 一.修改Nginx配置文件 使用winscp链接Liunx服务器,在/ect/nginx ...

  10. 第一次学习tornado小练习

    内容 这次是python的一个web框架,tornado,这个web框架在python的几个web框架中一个比较简单的web框架,刚开始接触python的时候就知道python有两个比较常用的web框 ...