我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10005
#define K 505
#define M 5505
using namespace std;
inline int read()
{
int sum=;
char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')
{
sum=(sum<<)+(sum<<)+ch-'';
ch=getchar();
}
return sum;
}
inline int Max(int x,int y)
{
return x>y?x:y;
}
int f[N][K],a[N],n,k,b[M][K];
inline void push(int p,int y,int x)
{
for(int i=x;i<M;i+=i&(-i))
for(int j=y;j<=k+;j+=j&(-j))
b[i][j]=Max(p,b[i][j]);
}
inline int get_Max(int y,int x)
{
int ans=;
for(int i=x;i>;i-=i&(-i))
for(int j=y;j>;j-=j&(-j))
ans=Max(ans,b[i][j]);
return ans;
}
int main()
{
int ans=;
n=read(),k=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)
for(int j=k;j>=;j--)
f[i][j]=get_Max(j+,a[i]+j+)+,push(f[i][j],j+,a[i]+j+),ans=Max(ans,f[i][j]);
printf("%d",ans);
return ;
}

[BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp的更多相关文章

  1. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

  2. [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划

    考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...

  3. BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)

    可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...

  4. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  5. BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】

    题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出 ...

  6. bzoj3594: [Scoi2014]方伯伯的玉米田

    dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j] ...

  7. bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP

    题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...

  8. 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)

    传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...

  9. SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1971  Solved: 961[Submit][St ...

随机推荐

  1. 21.1 XMLHttpRequest 对象【JavaScript高级程序设计第三版】

    IE5 是第一款引入XHR 对象的浏览器.在IE5 中,XHR 对象是通过MSXML 库中的一个ActiveX对象实现的.因此,在IE 中可能会遇到三种不同版本的XHR 对象,即MSXML2.XMLH ...

  2. jmeter 插件安装

    1.下载Plugins Manager插件 打开下载插件地址:https://jmeter-plugins.org/ 2.将下载的plugins-manager.jar包复制到Jmeter安装目录,l ...

  3. DVWA中SQL回显注入

    一.SQL注入简介 1.1 SQL语句就是操作数据库的语句,SQL注入就是通过web程序在数据库里执行任意SQL语句. SQL 注入是一种常见的Web安全漏洞,攻击者利用这个漏洞,可以访问和修改数据, ...

  4. BootCDNApi使用记录

    通过API获取BootCDN所加速的所有前端开源库的基本信息和文件列表 API 将一下API链接中的.min字样去掉后,获取到的JSON格式的返回信息是经过良好的格式化的,便于查看. 所有开源库简要信 ...

  5. PHP.38-TP框架商城应用实例-后台14-商品管理-商品扩展分类的删除、修改

    商品分类删除 1.删除商品时,根据商品id删除扩展分类表数据 商品扩展分类修改 1.在控制器GoodsController.class.php/edit()中根据商品id取出对应的所有扩展分类 2.在 ...

  6. c/c++ 数组传参

    在c/c++中,在进行数组传参时,数组的元素个数默认是不作为实参传入调用函数,也就是说c/c++ 不允许向函数传递一个完整的数组作为参数 实例: 1.形式参数是一个指针,实参包括数组长度: 1 voi ...

  7. 一步一步构建手机WebApp开发——页面布局篇

    继上一篇:一步一步构建手机WebApp开发——环境搭建篇过后,我相信很多朋友都想看看实战案例,这一次的教程是页面布局篇,先上图: 如上图所示,此篇教程便是教初学者如何快速布局这样的页面.废话少说,直接 ...

  8. 圣思源Java视频36节练习源码分享(自己的190+行代码对比老师的39行代码)

    题目: * 随机生成50个数字(整数),每个数字范围是[10,50],统计每个数字出现的次数 * 以及出现次数最多的数字与它的个数,最后将每个数字及其出现次数打印出来, * 如果某个数字出现次数为0, ...

  9. Linux-Shell脚本编程-学习-4-Shell编程-操作数字-加减乘除计算

    对于任何一种编程语言都很重要的特性就是操作数字的能力,遗憾的是,对于shell脚本来说,这个过程比较麻烦,在shell脚本中有两种途径来进行数学运算操作. 1.expr 最开始的时候,shell提供了 ...

  10. Qt 实现脉搏检测-2,简陋的功能产品

    今天终于可以接上硬件来显示真是的脉搏情况了,上图 主要就是显示脉搏的心跳曲线,和IBI 数据来源是三个,串口,网口和蓝牙,目前只实现了串口,过程应该都是差不多的,监听,读取,解析,等硬件更新后,再次更 ...