CF451E Devu and Flowers

题意:

\(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花。同一个盒子内的花颜色相同,不同盒子的花颜色不同。\(Devu\)要从中选出\(M\)枝花,求有多少种方案,对\(10e9+7\)取模。

数据范围

\(1 \le N \le 20,0 \le M \le 10^{14},0 \le c_i \le 10^{12}\)


其实就是求多重集组合数的模板题。

可以看看我写的博客

一些注意点,发现直接求会爆\(long long\),\(lucas\)一下免得爆了

注意\(M\)很大\(N\)很小,所以先把\((M-N)!\)除掉再算复杂度就是对的了


Code:

#include <cstdio>
#define ll long long
const ll mod=1e9+7;
ll quickpow(ll d,ll k)
{
ll f=1;
while(k)
{
if(k&1) f=f*d%mod;
d=d*d%mod;
k>>=1;
}
return f;
}
ll cal(ll r,ll l)
{
ll s=1;
for(ll i=r;i>l;i--) (s*=i)%=mod;
return s;
}
ll inv[22];
ll C(ll m,ll n)
{
if(m<n) return 0;
if(n==0) return 1;
if(m<mod) return cal(m,m-n)*inv[n]%mod;
return C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
ll n,s,f[23];
int main()
{
scanf("%lld%lld",&n,&s);
ll fac=1;
for(ll i=1;i<=n;i++)
{
fac=fac*i%mod;
inv[i]=quickpow(fac,mod-2);
scanf("%lld",f+i);
}
ll ans=0;
for(int i=0;i<1<<n;i++)
{
ll m=s+n-1,cnt=0;
for(int j=0;j<n;j++)
if(i>>j&1)
m-=f[j+1],cnt++;
(ans+=(cnt&1?-1ll:1ll)*C(m-cnt,n-1))%=mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}

2018.10,17

CF451E Devu and Flowers 解题报告的更多相关文章

  1. Luogu CF451E Devu and Flowers 题解报告

    题目传送门 [题目大意] 有n种颜色的花,第i种颜色的花有a[i]朵,从这些花中选m朵出来,问有多少种方案?答案对109+7取模 [思路分析] 这是一个多重集的组合数问题,答案就是:$$C_{n+m- ...

  2. CF451E Devu and Flowers(容斥)

    CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...

  3. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  4. CF451E Devu and Flowers 数论

    正解:容斥+Lucas定理+组合数学 解题报告: 传送门! 先mk个我不会的母函数的做法,,, 首先这个题的母函数是不难想到的,,,就$\left (  1+x_{1}^{1}+x_{1}^{2}+. ...

  5. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  6. 【LeetCode】605. Can Place Flowers 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 贪婪算法 日期 题目地址:https://leetcode.c ...

  7. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  8. CF451E Devu and Flowers(组合数)

    题目描述 Devu想用花去装饰他的花园,他已经购买了n个箱子,第i个箱子有fi朵花,在同一个的箱子里的所有花是同种颜色的(所以它们没有任何其他特征).另外,不存在两个箱子中的花是相同颜色的. 现在De ...

  9. codeforces 459 B.Pashmak and Flowers 解题报告

    题目链接:http://codeforces.com/problemset/problem/459/B 题目意思:有 n 朵 flowers,每朵flower有相应的 beauty,求出最大的beau ...

随机推荐

  1. hive自定义函数(UDF)

    首先什么是UDF,UDF的全称为user-defined function,用户定义函数,为什么有它的存在呢?有的时候 你要写的查询无法轻松地使用Hive提供的内置函数来表示,通过写UDF,Hive就 ...

  2. 基于设备树的led驱动程序

    #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include ...

  3. JavaScript之this解析

    1.解析器在调用函数每次都会向函数内部传递进一个隐含的参数,这个隐含的参数就是this,this指向的是一个对象,这个对象我们称为函数执行的上下文对象,根据函数的调用方式不同,this会指向不同的对象 ...

  4. Linux中程序的编译和链接过程

    1.从源码到可执行程序的步骤:预编译.编译.链接.strip 预编译:预编译器执行.譬如C中的宏定义就是由预编译器处理,注释等也是由预编译器处理的. 编译: 编译器来执行.把源码.c .S编程机器码. ...

  5. R语言绘图:时间序列分析 ggplot2绘制ACF PACF

    R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = " ...

  6. POLYGON(动态规划)

    学校老师布置的一道动规的题目,要求下次上课前AC.周一一放学就回家写,调试了一会儿OK了.在这边记录一下解题的思路和过程,也作为第一篇随笔,就是随便之一写,您也就随便之一看.有问题望你指出,多多包涵. ...

  7. C语言运算符优先级和结合性

    运算符优先级和结合性 优先级                                       运算符 结合性                                         ...

  8. 新版IdFTP解决中文乱码问题

    用XE10后开发FTP客户端,发现有中文乱码问题.这里也主要是编码的问题,在connect链接后,需要设置编码方可. 注意:  IndyTextEncoding_OSDefault;   该代码可能需 ...

  9. nginx location优先级

    目录 1. 配置语法 2. 配置实例 3. 总结: 网上查了下location的优先级规则,但是很多资料都说的模棱两可,自己动手实地配置了下,下面总结如下. 1. 配置语法 1> 精确匹配 lo ...

  10. Java工程师笔试题整理[校招篇]

    Java工程师笔试题整理[校招篇]     隔着两个月即将开始校招了.你是不是也想借着这个机会崭露头角,拿到某些大厂的offer,赢取白富美.走上人生巅峰?当然如果你还没能打下Java基础,一定要先打 ...