561. Array Partition I【easy】

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

Example 1:

Input: [1,4,3,2]

Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).

Note:

  1. n is a positive integer, which is in the range of [1, 10000].
  2. All the integers in the array will be in the range of [-10000, 10000].

解法一:

 class Solution {
public:
int arrayPairSum(vector<int>& nums) {
if (nums.empty()) {
return ;
} sort(nums.begin(), nums.end()); int sum = ;
for (int i = ; i < nums.size(); i += ) {
sum += nums[i];
} return sum;
}
};

为了不浪费元素,先排序,这样可以保证min加出来为max

比如[1, 9, 2, 4, 6, 8]

如果按顺序来的话,1和9就取1,2和4就取2,6和8就取6,显而易见并不是最大,原因就是9在和1比较的时候被浪费了,9一旦浪费就把8也给影响了,所以要先排序

@shawngao 引入了数学证明的方法,如下:

Let me try to prove the algorithm...

  1. Assume in each pair ibi >= ai.
  2. Denote Sm = min(a1, b1) + min(a2, b2) + ... + min(an, bn). The biggest Sm is the answer of this problem. Given 1Sm = a1 + a2 + ... + an.
  3. Denote Sa = a1 + b1 + a2 + b2 + ... + an + bnSa is constant for a given input.
  4. Denote di = |ai - bi|. Given 1di = bi - ai. Denote Sd = d1 + d2 + ... + dn.
  5. So Sa = a1 + a1 + d1 + a2 + a2 + d2 + ... + an + an + di = 2Sm + Sd => Sm = (Sa - Sd) / 2. To get the max Sm, given Sa is constant, we need to make Sd as small as possible.
  6. So this problem becomes finding pairs in an array that makes sum of di (distance between ai and bi) as small as possible. Apparently, sum of these distances of adjacent elements is the smallest. If that's not intuitive enough, see attached picture. Case 1 has the smallest Sd.

561. Array Partition I【easy】的更多相关文章

  1. 167. Two Sum II - Input array is sorted【easy】

    167. Two Sum II - Input array is sorted[easy] Given an array of integers that is already sorted in a ...

  2. 167. Two Sum II - Input array is sorted【Easy】【双指针-有序数组求两数之和为目标值的下标】

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  3. 1. Two Sum【easy】

    1. Two Sum[easy] Given an array of integers, return indices of the two numbers such that they add up ...

  4. 26. Remove Duplicates from Sorted Array【easy】

    26. Remove Duplicates from Sorted Array[easy] Given a sorted array, remove the duplicates in place s ...

  5. 88. Merge Sorted Array【easy】

    88. Merge Sorted Array[easy] Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 ...

  6. 448. Find All Numbers Disappeared in an Array【easy】

    448. Find All Numbers Disappeared in an Array[easy] Given an array of integers where 1 ≤ a[i] ≤ n (n ...

  7. 189. Rotate Array【easy】

    189. Rotate Array[easy] Rotate an array of n elements to the right by k steps. For example, with n = ...

  8. 121. Best Time to Buy and Sell Stock【easy】

    121. Best Time to Buy and Sell Stock[easy] Say you have an array for which the ith element is the pr ...

  9. 27. Remove Element【easy】

    27. Remove Element[easy] Given an array and a value, remove all instances of that value in place and ...

随机推荐

  1. [Atcoder Grand Contest 003] Tutorial

    Link: AGC003 传送门 A: 判断如果一个方向有,其相反方向有没有即可 #include <bits/stdc++.h> using namespace std; ]; map& ...

  2. 【spfa】bzoj3921 Mimori与树海

    考虑“删除后图仍连通”,即其不是无向图的桥(bridge),可以用Tarjan算法预处理,这里不赘述. [算法一] 枚举删除的是哪条边,然后枚举起点,暴搜,统计答案. 可以通过0.1号测试点. 预计得 ...

  3. 1.1(学习笔记)Servlet简介及一个简单的实例

    一.Servlet简介 Servlet是使用Java语言编写的服务器端程序,可以生产动态的Web界面. 主要运行在服务器端,Servlet可以方便的处理客户端传来的HTTP请求,并返回一个响应. 二. ...

  4. Problem A: 零起点学算法16——鸡兔同笼

    #include<stdio.h> int main() { int n,m,a,b; while(scanf("%d %d",&n,&m)!=EOF) ...

  5. C#正则表达式开源工具

    先交代一下背景,最近工作中经常用到正则表达式,而正则表达式这个东西我个人觉得很鸡肋,不用吧,有些功能实现起来会很麻烦.用吧,又不是说工作中经常用到,只是有时候有些需要求用到而已.但是正则表达式只要一段 ...

  6. Ubuntu 16.04通过源码安装QUEM虚拟机

    下载编译安装: wget http://download.qemu-project.org/qemu-2.9.0.tar.xz tar xvJf qemu-2.9.0.tar.xz cd qemu-2 ...

  7. 继承了母板页的onload的事件

    这段时间实在是太忙了, 现借国庆放假之际,把一些问题写一下, 不久前,有位网友问我继承了母版页的页面要加载body的onload事件如何加载,我以前刚开始用母板的时候也碰到过这种问题, 直接是用JAV ...

  8. [Lync]lync同步通讯簿

    概述 在客户现场部署lync的时候,突然发现新安装的lync客户端,搜索联系人功能无法使用,而将lync客户端安装后,隔一段时间后,又可以查询了,发现可能是数据没有同步的原因. 解决方案 客户端地址簿 ...

  9. Tomcat部署时war和war exploded的区别

    转自徐刘根的Tomcat部署时war和war exploded区别以及平时踩得坑 一.war和war exploded的区别 在使用IDEA开发项目的时候,部署Tomcat的时候通常会出现下边的情况: ...

  10. [转]C++中关于new和delete的使用

    转载的地址 近一直在啃 C++ Primer 中文版第4版,发现 C++中new和delete应用遍布全书,现对其使用作简单总结.在C++中,可以使用new和delete动态创建和释放数组或者单个对象 ...