一、题目

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

二、题意分析

原根并不像百度介绍的那样,需要深入去研究。直接上干货,《初等数论及应用》(第六版)P260 定理9.5

如果正整数n有一个原根,那么它一共有φ(φ(n))个不同的原根。

对应该题目,因为给的p是奇素数,所以答案就是φ(p-1)。

三、代码

#include <iostream>
#include <cstring>
using namespace std; const int MAXN = 66000;
int Prime[MAXN], nPrime;
bool isPrime[MAXN]; void make_prime()
{
memset(isPrime, 1, sizeof(isPrime));
nPrime = 0;
isPrime[0] = isPrime[1] = 0;
for(int i = 2; i < MAXN; i++)
{
if(isPrime[i])
Prime[nPrime++] = i;
for(int j = 0; j < nPrime && (long long)i*Prime[j] < MAXN; j++)
{
isPrime[i*Prime[j]] = 0;
if(i%Prime[j] == 0)
break;
}
}
} int Euler(int p)
{
int ans = p;
for(int i = 0; Prime[i]*Prime[i] <= p ; i++)
{
if( p % Prime[i] == 0)
{
ans = ans - ans/Prime[i];
do
{
p /= Prime[i];
}while(p%Prime[i] == 0);
}
}
if(p > 1)
ans = ans - ans/p;
return ans;
} int main()
{
int p;
make_prime();
while( cin >> p )
{
cout << Euler(p-1) << endl;
}
return 0;
}

  

POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】的更多相关文章

  1. 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}

    题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...

  2. poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数

    题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...

  3. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  4. 欧拉函数&&欧拉定理

    定义和简单性质 欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的. 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1 ...

  5. 欧拉函数(Euler_Function)

    一.基本概述在数论,对正整数n,欧拉函数varphi(n)是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商 ...

  6. POJ1284 Primitive Roots [欧拉函数,原根]

    题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted:  ...

  7. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  8. poj1284(欧拉函数+原根)

    题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...

  9. LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)

    题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...

随机推荐

  1. (一)maven的安装

    Maven下载 下载地址:http://maven.apache.org/download.cgi 下载完成后,得到一个压缩包

  2. Python学习笔记_Python向Excel写入数据

    实验环境 1.OS:Win 10 64位 2.Python 3.7 3.如果没有安装xlwt库,则安装:pip install xlwt 下面是从网上找到的一段代码,网上这段代码,看首行注释行,是在L ...

  3. 【Docker官方文档】理解Docker

    本文来自Docker的官方文档,详细介绍了Docker的体系结构.重要概念.内部工作机理等内容,推荐不了解Docker内部原理的同学阅读. 什么是Docker? Docker是一个用于开发.交付和运行 ...

  4. Solidity部署问题

    Solidity是一个有诸多限制的语言,部署智能合约以及运行都需要gas. 部署的时候如果程序太大,所需要的gas会超过一个区块的上限,这样就没法部署合约.如果用metamask测试的话会弹出以下警告 ...

  5. wamp安装两个,数据库丢了,怎么办

    wampserver3.*下载了好几天一直没有安装,今天发现必须安装,已升级自己的php版本,不过也饿可以自己手动配置PHP版本,既然有安装包就算了吧,当安装完后,发现忘记备份自己的数据库了,幸好之前 ...

  6. IE6支持兼容max-height、min-height CSS样式

    1.IE6支持max-height解决方法   -   TOP IE6支持最大高度解决CSS代码: .yangshi{max-height:1000px;_height:expression((doc ...

  7. 第16章-使用Spring MVC创建REST API

    1 了解REST 1.1 REST的基础知识 REST与RPC几乎没有任何关系.RPC是面向服务的,并关注于行为和动作:而REST是面向资源的,强调描述应用程序的事物和名词. 为了理解REST是什么, ...

  8. WCF分布式开发步步为赢(1):WCF分布式框架基础概念

    众所周知,系统间的低耦合一直是大型企业应用系统集成追寻的目标,SOA面向服务架构的出现为我们的如何利用现有企业系统资源进行企业ERP系统设计和实现提供了重要的参考原则.SOA如此炙手可热,各大厂商都推 ...

  9. ubuntu14.04,安装Git(源代码管理工具)

    在shell中执行:sudo apt-get install git-core

  10. 可变大小、颜色边框、样式的UISwitch

    1.CHSwitch.h // // 文 件 名:CHSwitch.h // // 版权所有:Copyright © 2018 lelight. All rights reserved. // 创 建 ...