POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】
一、题目
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Output
Sample Input
23
31
79
Sample Output
10
8
24
二、题意分析
原根并不像百度介绍的那样,需要深入去研究。直接上干货,《初等数论及应用》(第六版)P260 定理9.5
如果正整数n有一个原根,那么它一共有φ(φ(n))个不同的原根。
对应该题目,因为给的p是奇素数,所以答案就是φ(p-1)。
三、代码
#include <iostream>
#include <cstring>
using namespace std; const int MAXN = 66000;
int Prime[MAXN], nPrime;
bool isPrime[MAXN]; void make_prime()
{
memset(isPrime, 1, sizeof(isPrime));
nPrime = 0;
isPrime[0] = isPrime[1] = 0;
for(int i = 2; i < MAXN; i++)
{
if(isPrime[i])
Prime[nPrime++] = i;
for(int j = 0; j < nPrime && (long long)i*Prime[j] < MAXN; j++)
{
isPrime[i*Prime[j]] = 0;
if(i%Prime[j] == 0)
break;
}
}
} int Euler(int p)
{
int ans = p;
for(int i = 0; Prime[i]*Prime[i] <= p ; i++)
{
if( p % Prime[i] == 0)
{
ans = ans - ans/Prime[i];
do
{
p /= Prime[i];
}while(p%Prime[i] == 0);
}
}
if(p > 1)
ans = ans - ans/p;
return ans;
} int main()
{
int p;
make_prime();
while( cin >> p )
{
cout << Euler(p-1) << endl;
}
return 0;
}
POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】的更多相关文章
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- 欧拉函数&&欧拉定理
定义和简单性质 欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的. 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1 ...
- 欧拉函数(Euler_Function)
一.基本概述在数论,对正整数n,欧拉函数varphi(n)是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商 ...
- POJ1284 Primitive Roots [欧拉函数,原根]
题目传送门 Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5434 Accepted: ...
- (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- poj1284(欧拉函数+原根)
题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...
- LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...
随机推荐
- Java “hello word” 第一天
//新建包和类 //java是包,c#是命名空间package test1;/** * 需求:练习一个hello word * 思路: * 1.定义一个类,因为java程序都是以类的形式存在的,类的形 ...
- php扩展开发3--扩展类传参数
1.需要实现的细节 实现一个person类 ,实现一个doing方法和saying方法 在构造方法中传递一个数组,在doing中打印此数组 saying方法中,构建一个空数组,返回,不需要传参. 2. ...
- 408. Valid Word Abbreviation有效的单词缩写
[抄题]: Given a non-empty string s and an abbreviation abbr, return whether the string matches with th ...
- js 禁止后退键
function doKey(e) { var ev = e || window.event; //获取event对象 var obj = ev.target || ev.srcElement; // ...
- HDU 3365 New Ground (计算几何)
题意:给定点A[0~n-1]和B[0],B[1],A[0].A[1]映射到B[0].B[1],求出其余点的映射B[2]~B[n-1]. 析:运用复数类,关键是用模板复数类,一直编译不过,我明明能编译过 ...
- Unity破解不成功解决方案
你是不是遇到过Unity新版本出来的时候就急着使用,但是安装好了,却破解不成功的问题(你之前的版本破解过).这是由于你的注册表没有彻底的删除,接下来我们图解如何清理. 1.卸载以前的版本,卸载完了删除 ...
- Highway Networks(高速路神经网络)
Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱: ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- 做ETL的时候用到的数据同步更新代码
这里是用的从一个库同步到另一个库,代码如下 private void IncrementalSyncUpdate(string fromConn, string toConn, Dictionary& ...
- C# LINQ(3)
我们还是接着讨论一下group by 这一章节讨论group的本质:分组. 分组之后进行存储或者查询. 这个时候就要用一个新的关键字:into 这个之后就group就不作为结尾了. 必须重写另起sel ...