题目描述

给出一张2*n的网格图,初始每条边都是不连通的。多次改变一条边的连通性或询问两个点是否连通。

输入

第一行只有一个整数C,表示网格的列数。接下来若干行,每行为一条交通信息,以单独的一行“Exit”作为结束。我们假设在一开始所有的道路都是堵塞的。我们保证 C小于等于100000,信息条数小于等于100000。

输出

对于每个查询,输出一个“Y”或“N”。

样例输入

2
Open 1 1 1 2
Open 1 2 2 2
Ask 1 1 2 2
Ask 2 1 2 2
Exit

样例输出

Y
N


题解

线段树区间合并+STL-set

由于地图只有2*n,因此可以对于每一段格子维护其端点的连通性,即维护左上(下)与右上(下)的连通性。使用线段树区间合并很容易维护。

然后对于每个询问,如果不经过两点围成矩形区域以外的边的话,直接在线段树中查找即可。

如果经过矩形区域以外的边,那么一定是跨越行,并且显然是经过左(右)第一个能够跨越行的纵向边。因此可以使用set查前驱后继,此时再使用线段树查询即可。

时间复杂度$O(n\log n)$

#include <set>
#include <cstdio>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
set<int> s;
set<int>::iterator it;
struct data
{
bool v[2][2];
bool *operator[](int a) {return v[a];}
data operator+(data a)
{
data ans;
ans[0][0] = (v[0][0] && a[0][0]) || (v[0][1] && a[1][0]);
ans[0][1] = (v[0][0] && a[0][1]) || (v[0][1] && a[1][1]);
ans[1][0] = (v[1][0] && a[0][0]) || (v[1][1] && a[1][0]);
ans[1][1] = (v[1][0] && a[0][1]) || (v[1][1] && a[1][1]);
return ans;
}
}a[N << 2];
bool px[N][2] , py[N];
int n;
char str[10];
inline void pushup(int x)
{
a[x] = a[x << 1] + a[x << 1 | 1];
}
void fix(int p , int l , int r , int x)
{
if(l == r)
{
a[x][0][0] = (px[p][0]) || (py[p] && px[p][1] && py[p + 1]);
a[x][0][1] = (py[p] && px[p][1]) || (px[p][0] && py[p + 1]);
a[x][1][0] = (py[p] && px[p][0]) || (px[p][1] && py[p + 1]);
a[x][1][1] = (px[p][1]) || (py[p] && px[p][0] && py[p + 1]);
return;
}
int mid = (l + r) >> 1;
if(p <= mid) fix(p , lson);
else fix(p , rson);
pushup(x);
}
data query(int b , int e , int l , int r , int x)
{
if(b > e)
{
data ans;
ans[0][0] = ans[1][1] = 1;
ans[0][1] = ans[1][0] = py[b];
return ans;
}
if(b <= l && r <= e) return a[x];
int mid = (l + r) >> 1;
if(e <= mid) return query(b , e , lson);
else if(b > mid) return query(b , e , rson);
else return query(b , e , lson) + query(b , e , rson);
}
bool judge(int x1 , int y1 , int x2 , int y2)
{
if(y1 > y2) swap(x1 , x2) , swap(y1 , y2);
if(query(y1 , y2 - 1 , 1 , n , 1)[x1][x2]) return 1;
int pl = 0 , pr = 0;
it = s.upper_bound(y1);
if(it != s.begin()) pl = *--it;
it = s.lower_bound(y2);
if(it != s.end()) pr = *it;
if(pl && query(pl , y1 - 1 , 1 , n , 1)[x1][x1] && query(pl , y2 - 1 , 1 , n , 1)[x1 ^ 1][x2]) return 1;
if(pr && query(y1 , pr - 1 , 1 , n , 1)[x1][x2 ^ 1] && query(y2 , pr - 1 , 1 , n , 1)[x2][x2]) return 1;
if(pl && pr && query(pl , y1 - 1 , 1 , n , 1)[x1][x1] && query(pl , pr - 1 , 1 , n , 1)[x1 ^ 1][x2 ^ 1] && query(y2 , pr - 1 , 1 , n , 1)[x2][x2]) return 1;
return 0;
}
int main()
{
int x1 , y1 , x2 , y2;
scanf("%d" , &n) , n -- ;
while(~scanf("%s" , str) && str[0] != 'E')
{
scanf("%d%d%d%d" , &x1 , &y1 , &x2 , &y2) , x1 -- , x2 -- ;
if(str[0] != 'A')
{
if(x1 > x2) swap(x1 , x2);
if(y1 > y2) swap(y1 , y2);
if(x1 == x2) px[y1][x1] = (str[0] == 'O') , fix(y1 , 1 , n , 1);
else
{
if(str[0] == 'O') s.insert(y1) , py[y1] = 1;
else s.erase(y1) , py[y1] = 0;
if(y1 > 1) fix(y1 - 1 , 1 , n , 1);
if(y1 <= n) fix(y1 , 1 , n , 1);
}
}
else if(judge(x1 , y1 , x2 , y2)) puts("Y");
else puts("N");
}
return 0;
}

【bzoj1018】[SHOI2008]堵塞的交通traffic 线段树区间合并+STL-set的更多相关文章

  1. [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MB Submit: 3795  Solved: 1253 [Sub ...

  2. BZOJ 1018: [SHOI2008]堵塞的交通traffic [线段树 区间信息]

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 3064  Solved: 1027[Submi ...

  3. Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)

    这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...

  4. bzoj1018[SHOI2008]堵塞的交通traffic——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...

  5. [bzoj1018][SHOI2008]堵塞的交通traffic_线段树

    bzoj-1018 SHOI-2008 堵塞的交通traffic 参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html 题目大意:有一天,由于某 ...

  6. 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树

    [BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...

  7. BZOJ1018 SHOI2008堵塞的交通(线段树)

    动态图的连通性当然是可以用LCT维护的.但这相当的不优美,毕竟这样做没有用到任何该图的性质,LCT自带的大常数也会使其跑得非常慢. 考虑用线段树维护区间左右端四个点之间各自的连通性(仅经过该区间内路径 ...

  8. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)

    传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...

  9. 【BZOJ1018】堵塞的交通(线段树)

    [BZOJ1018]堵塞的交通(线段树) 题面 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可 以被看成是一个2行C列的矩形网 ...

随机推荐

  1. redis主从同步收到以下参数影响

      repl-ping-slave-period主从心跳ping的时间间隔.默认10 repl-timeout  从节点超时时间.默认60 repl-backlog-size  主节点保存操作日志的大 ...

  2. Linux中查看已安装内存与交换空间使用情况

    目录   1. free查看内存使用量   2. 查看 /proc/meminfo 文件获取物理内存信息   3. top命令获取内存用量 1. free查看内存用量命令 该命令是专门用于查看内存用量 ...

  3. JavaScript文本框焦点事件

    效果图如下: <!-- 当文本框获得焦点时候,如果文本框内容是 请输入搜索关键字 清空文本框,输入内容变黑色 --> <!-- 当文本框失去焦点时候,如果文本框无内容,则添加灰色的 ...

  4. laravel构造函数跳转失败

    <?php namespace App\Http\Controllers\Admin; use Illuminate\Http\Request; use App\Http\Requests;us ...

  5. php+高德地图webapi 高德jsapi 实现 当前位置与目标位置距离 并按照距离排序(坐标逆转换)

    <script type="text/javascript" src="https://api.map.baidu.com/api?v=2.0&ak='自己 ...

  6. CMDB介绍

    CMDB https://lupython.gitee.io/2018/05/05/CMDB%E4%BB%8B%E7%BB%8D/ 尚泽凯博客地址 传统运维与自动化运维的区别 传统运维: ​ 1.项目 ...

  7. 005---Python数据类型--字典

    字典 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px ...

  8. (数据科学学习手札14)Mean-Shift聚类法简单介绍及Python实现

    不管之前介绍的K-means还是K-medoids聚类,都得事先确定聚类簇的个数,而且肘部法则也并不是万能的,总会遇到难以抉择的情况,而本篇将要介绍的Mean-Shift聚类法就可以自动确定k的个数, ...

  9. R语言学习笔记(二十):stringr包中函数介绍(表格)

    stringr包中的重要函数 函数 功能说明 R Base中对应函数 使用正则表达式的函数 str_extract() 提取首个匹配模式的字符 regmatches() str_extract_all ...

  10. 【Java】关于Spring框架的总结 (二)

    上文提到了 Spring 的 IoC 特性和 AOP 特性,只提到个别的实现方法.本文将对 IoC 和 AOP 其他方法进行讲解. 多种方式实现依赖注入 1.设值注入 上文中使用的注入方法:通过 se ...