题目描述

给出一张2*n的网格图,初始每条边都是不连通的。多次改变一条边的连通性或询问两个点是否连通。

输入

第一行只有一个整数C,表示网格的列数。接下来若干行,每行为一条交通信息,以单独的一行“Exit”作为结束。我们假设在一开始所有的道路都是堵塞的。我们保证 C小于等于100000,信息条数小于等于100000。

输出

对于每个查询,输出一个“Y”或“N”。

样例输入

2
Open 1 1 1 2
Open 1 2 2 2
Ask 1 1 2 2
Ask 2 1 2 2
Exit

样例输出

Y
N


题解

线段树区间合并+STL-set

由于地图只有2*n,因此可以对于每一段格子维护其端点的连通性,即维护左上(下)与右上(下)的连通性。使用线段树区间合并很容易维护。

然后对于每个询问,如果不经过两点围成矩形区域以外的边的话,直接在线段树中查找即可。

如果经过矩形区域以外的边,那么一定是跨越行,并且显然是经过左(右)第一个能够跨越行的纵向边。因此可以使用set查前驱后继,此时再使用线段树查询即可。

时间复杂度$O(n\log n)$

#include <set>
#include <cstdio>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
set<int> s;
set<int>::iterator it;
struct data
{
bool v[2][2];
bool *operator[](int a) {return v[a];}
data operator+(data a)
{
data ans;
ans[0][0] = (v[0][0] && a[0][0]) || (v[0][1] && a[1][0]);
ans[0][1] = (v[0][0] && a[0][1]) || (v[0][1] && a[1][1]);
ans[1][0] = (v[1][0] && a[0][0]) || (v[1][1] && a[1][0]);
ans[1][1] = (v[1][0] && a[0][1]) || (v[1][1] && a[1][1]);
return ans;
}
}a[N << 2];
bool px[N][2] , py[N];
int n;
char str[10];
inline void pushup(int x)
{
a[x] = a[x << 1] + a[x << 1 | 1];
}
void fix(int p , int l , int r , int x)
{
if(l == r)
{
a[x][0][0] = (px[p][0]) || (py[p] && px[p][1] && py[p + 1]);
a[x][0][1] = (py[p] && px[p][1]) || (px[p][0] && py[p + 1]);
a[x][1][0] = (py[p] && px[p][0]) || (px[p][1] && py[p + 1]);
a[x][1][1] = (px[p][1]) || (py[p] && px[p][0] && py[p + 1]);
return;
}
int mid = (l + r) >> 1;
if(p <= mid) fix(p , lson);
else fix(p , rson);
pushup(x);
}
data query(int b , int e , int l , int r , int x)
{
if(b > e)
{
data ans;
ans[0][0] = ans[1][1] = 1;
ans[0][1] = ans[1][0] = py[b];
return ans;
}
if(b <= l && r <= e) return a[x];
int mid = (l + r) >> 1;
if(e <= mid) return query(b , e , lson);
else if(b > mid) return query(b , e , rson);
else return query(b , e , lson) + query(b , e , rson);
}
bool judge(int x1 , int y1 , int x2 , int y2)
{
if(y1 > y2) swap(x1 , x2) , swap(y1 , y2);
if(query(y1 , y2 - 1 , 1 , n , 1)[x1][x2]) return 1;
int pl = 0 , pr = 0;
it = s.upper_bound(y1);
if(it != s.begin()) pl = *--it;
it = s.lower_bound(y2);
if(it != s.end()) pr = *it;
if(pl && query(pl , y1 - 1 , 1 , n , 1)[x1][x1] && query(pl , y2 - 1 , 1 , n , 1)[x1 ^ 1][x2]) return 1;
if(pr && query(y1 , pr - 1 , 1 , n , 1)[x1][x2 ^ 1] && query(y2 , pr - 1 , 1 , n , 1)[x2][x2]) return 1;
if(pl && pr && query(pl , y1 - 1 , 1 , n , 1)[x1][x1] && query(pl , pr - 1 , 1 , n , 1)[x1 ^ 1][x2 ^ 1] && query(y2 , pr - 1 , 1 , n , 1)[x2][x2]) return 1;
return 0;
}
int main()
{
int x1 , y1 , x2 , y2;
scanf("%d" , &n) , n -- ;
while(~scanf("%s" , str) && str[0] != 'E')
{
scanf("%d%d%d%d" , &x1 , &y1 , &x2 , &y2) , x1 -- , x2 -- ;
if(str[0] != 'A')
{
if(x1 > x2) swap(x1 , x2);
if(y1 > y2) swap(y1 , y2);
if(x1 == x2) px[y1][x1] = (str[0] == 'O') , fix(y1 , 1 , n , 1);
else
{
if(str[0] == 'O') s.insert(y1) , py[y1] = 1;
else s.erase(y1) , py[y1] = 0;
if(y1 > 1) fix(y1 - 1 , 1 , n , 1);
if(y1 <= n) fix(y1 , 1 , n , 1);
}
}
else if(judge(x1 , y1 , x2 , y2)) puts("Y");
else puts("N");
}
return 0;
}

【bzoj1018】[SHOI2008]堵塞的交通traffic 线段树区间合并+STL-set的更多相关文章

  1. [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MB Submit: 3795  Solved: 1253 [Sub ...

  2. BZOJ 1018: [SHOI2008]堵塞的交通traffic [线段树 区间信息]

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 3064  Solved: 1027[Submi ...

  3. Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)

    这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...

  4. bzoj1018[SHOI2008]堵塞的交通traffic——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...

  5. [bzoj1018][SHOI2008]堵塞的交通traffic_线段树

    bzoj-1018 SHOI-2008 堵塞的交通traffic 参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html 题目大意:有一天,由于某 ...

  6. 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树

    [BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...

  7. BZOJ1018 SHOI2008堵塞的交通(线段树)

    动态图的连通性当然是可以用LCT维护的.但这相当的不优美,毕竟这样做没有用到任何该图的性质,LCT自带的大常数也会使其跑得非常慢. 考虑用线段树维护区间左右端四个点之间各自的连通性(仅经过该区间内路径 ...

  8. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)

    传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...

  9. 【BZOJ1018】堵塞的交通(线段树)

    [BZOJ1018]堵塞的交通(线段树) 题面 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可 以被看成是一个2行C列的矩形网 ...

随机推荐

  1. 通过Ops Manager安装管理mongodb-3.4集群

    node1 Ops Manager,mongodb,agent node2 mongodb,agent node3 mongodb,agent 参考文档 https://docs.opsmanager ...

  2. [Git add . ] 遇到The file will have its original line endings in your working directory 解决办法

    1.在新项目中使用[ git add . ]时出现: warning: LF will be replaced by CRLF in ...... The file will have its ori ...

  3. hive 学习系列之七 hive 常用数据清洗函数

    1,case when 的利用,清洗诸如评分等的内容,用例如下. case when new.comment_grade = '五星商户' then 50 when new.comment_grade ...

  4. python线程与进程小结

    传统方式是调用2个方法执行1个任务,方法按顺序依次执行 # -*- coding:utf-8 -*- import threading import time def run(n): print('t ...

  5. JavaScript之原型 Prototype

    1.我们所创建的每一个函数,解析器都会向函数中添加一个属性prototype.这个属性对应着一个对象,这个对象就是我们所谓的原型对象.如果函索作为普通函数调用prototype没有任何作用. 当函数以 ...

  6. C语言实例解析精粹学习笔记——35(报数游戏)

    实例35: 设由n个人站成一圈,分别被编号1,2,3,4,……,n.第一个人从1开始报数,每报数位m的人被从圈中推测,其后的人再次从1开始报数,重复上述过程,直至所有人都从圈中退出. 实例解析: 用链 ...

  7. C# 设置程序最小化到任务栏右下角,鼠标左键单击还原,右键提示关闭程序

    首先设置程序最小化到任务栏右下角 先给窗口添加一个notifyIcon控件 为notifyIcon控件设置ICO图标(不设置图标将无法在任务栏显示) 给notifyIcon控件添加点击事件 然后是最小 ...

  8. 开启TCP BBR拥塞控制算法

    原文来自:https://github.com/iMeiji/shadowsocks_install/wiki/%E5%BC%80%E5%90%AFTCP-BBR%E6%8B%A5%E5%A1%9E% ...

  9. NB-IOT的键值对

    1. 关于NB-IOT的软件开发,有一个功能,NB收到数据的时候可以唤醒处于低功耗下的MCU. 2. 2个键值对可以配置这个功能.使用键值对的方式. 3. 遇到的第一个问题,<config> ...

  10. 在编程的时候,NotePad++ 中闪烁的光标突然有竖着闪烁的编程蓝色下划线闪烁的--小技巧告诉你-费元星

    当在写代码时出现的光标闪烁(横线闪烁) 在键盘上找 Insert ,按这个Insert就可以把横向闪烁光标( _ )修改成竖向闪烁光标样式( | ),横向光标会在你写代码的时候修改前面的代码,把光标移 ...