题目大意:交互题,给你三个有序数组,长度分别为$n\_a,n\_b,n\_c$,都不超过$10^5$。三个函数$get\_a(i),get\_b(i),get\_c(i)$,分别返回$a_i,b_i,c_i$。

现在要你编写一个函数$query\_kth()$,求出三个数组中第$k$大的元素。

题解:每次求$\Big\lfloor\dfrac k 3\Big\rfloor$的$a,b,c$,把最小的舍去

卡点:下标移动时写错

C++ Code:

#include "kth.h"
#include <cstdio>
#include <algorithm>
int query_kth(int n_a, int n_b, int n_c, int k) {
int a = 0, b = 0, c = 0, num[10], tot = 0;
while (k >= 3) {
int t = k / 3;
int A = get_a(a + t - 1), B = get_b(b + t - 1), C = get_c(c + t - 1);
if (A < B) {
if (A < C) a += t;
else c += t;
} else {
if (B < C) b += t;
else c += t;
}
k -= t;
}
for (int i = 1; i <= k; i++) {
if (a < n_a) num[++tot] = get_a(a++);
if (b < n_b) num[++tot] = get_b(b++);
if (c < n_c) num[++tot] = get_c(c++);
}
std::sort(num + 1, num + tot + 1);
return num[k];
return 0;
}

  

[UOJ #52]【UR #4】元旦激光炮的更多相关文章

  1. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  2. UOJ#52. 【UR #4】元旦激光炮(交互)

    题意 给出三个已经排好序的数组$a, b, c$ 在$100$次询问内找出第$k$小的元素 Sol 一种很显然的$log^2n$的做法:首先在$a$中二分,然后再$b,c$中二分.这样可以得到$60$ ...

  3. Uoj 52. 【UR #4】元旦激光炮 神题+交互题

    Code: #include "kth.h" #include<iostream> int minn(int x,int y){return x<y?x:y;}; ...

  4. #52. 【UR #4】元旦激光炮 (交互式题)

    链接:http://uoj.ac/problem/52 刚刚越过绝境长城,只见天空中出现了炫目的光芒 —— 圣诞老人出现了. 元旦三侠立刻进入战斗.生蛋侠.圆蛋侠和零蛋侠分别有 na,nb,ncna, ...

  5. UOJ 52 元旦激光炮

    http://uoj.ac/problem/52 题意:每次可以得到3个序列中 思路:每次分别取出三个序列的K/3长度的位置,取最小的那个,然后每次减掉它,总复杂度是Nlog3N #include & ...

  6. UOJ52——【UR #4】元旦激光炮

    1.题目大意:就是给你三个数组啦,然后让你找到其中的第K大,但是,不可以直接访问数组,必须通过一种函数,最后的分数 是看调用几次这个函数,100次以内10分,2000以内6分.... 2.分析:最开始 ...

  7. 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp

    题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...

  8. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

  9. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

随机推荐

  1. Centos6.5 安装python2.7.14

    2018-06-30 因为Centos6.5系统默认使用,python2.6.6.最近在学python.老师推荐将2.6.6升级至2.7.14.所以以留此文,怕哪天脑子短路好回来看看... >1 ...

  2. 微信小程序-通知公告滚动提示

    wxml如下: <view class='scroll_view_border'> <view class="srcoll_view" bindtap=" ...

  3. zookeeper环境搭建(Linux)

    安装zookeeper 安装jdk(此处省略) 解压tar包并配置变量环境 配置文件修改 将/usr/local/src/zookeeper-3.4.5/conf这个路径下的zoo_sample.cf ...

  4. 006---hashlib模块

    hashlib模块 HASH 一般翻译成散列,也可以叫哈希. 把任意长度的输入通过散列算法变换成固定的长度. 该转换是一种压缩映射 MD5 输入任意长度的信息,经过处理.输出为128位的信息(数字指纹 ...

  5. [BZOJ1040][ZJOI2008]骑士(树形DP)

    对于一个联通块内,有且只有一个环,即n个点n条边 那么找到那个环,然后任意断一条边,这个联通块就变成一棵树了,然后做树形DP就行了 对于断的边要记录下来DP时特判 Code #include < ...

  6. Hbase数据IO

    场景及方案分析 场景1:logs --> HBase logs -> flume -> hfile -> import -> HBase (实时) csv导入HBase ...

  7. ReentrantLock类的hasQueuedPredecessors方法和head节点的含义

    部分启发来源自文章:Java并发编程--Lock PART 1 1.如果h==t成立,h和t均为null或是同一个具体的节点,无后继节点,返回false.2.如果h!=t成立,head.next是否为 ...

  8. javascript 自定义发布与订阅

    //声明一个类,与普通的类的声明不一样, function Girl() { //将类的事件声明成一个私有的属性,里面是一个对象 this._events = {} } /* { "失恋&q ...

  9. laravel5.5jwt-auth的使用

    laravel5.5 + jwt-auth:dev-develop 安装扩展 composer require tymon/jwt-auth:dev-develop --prefer-source 添 ...

  10. 云计算之路-阿里云上:“黑色1秒”问题与2009年Xen一个补丁的故事

    在之前对“黑色1秒”问题的分析博文中,我们将最大嫌疑对象锁定在了Xen,在这篇博文我们将从Xen的角度进行分析.也许有人会问,为什么不知道天多高地多厚地去研究不属于自己范围的问题?只因我们对一个问题的 ...