感受到网络流的强大了……这道题目的关键在于:

  前后颜色不变的,流入流出的次数相等;原本是黑色的最后变成了白色,流出比流入次数多1;原本是白色最后变成黑色,流入比流出次数多一。所以我们将每一点拆成3个点,分别代表流入点,原点与流出点。最开始为黑色的点与源点连流量为1,费用为0的边,最后为黑色的点与汇点连流量为1,费用为0的边。

#include<bits/stdc++.h>
using namespace std;
#define maxn 300
#define maxm 8000
#define INF 99999
int n, m, size, tem, a[maxn][maxn], b[maxn][maxn], c[maxn][maxn], head[maxm];
int cnp, fans, ans, cost, dis[maxm], pre[maxm], flow[maxm];
int dx[] = {, , , , , , -, -, -};
int dy[] = {, , -, , , -, , , -};
int s = , t;
bool vis[maxm];
deque <int> q; struct edge
{
int to, last, f, c;
}E[maxn * ]; void add(int u, int v, int f, int c)
{
E[cnp].to = v, E[cnp].last = head[u], E[cnp].f = f, E[cnp].c = c; head[u] = cnp ++;
E[cnp].to = u, E[cnp].last = head[v], E[cnp].f = , E[cnp].c = -c; head[v] = cnp ++;
} int Get_id(int x, int y)
{
return (x - ) * m + y;
} void init()
{
memset(head, -, sizeof(head));
} int SPFA()
{
q.push_back(s);
flow[s] = INF;
for(int i = ; i <= n * m * + ; i ++) dis[i] = INF;
while(!q.empty())
{
int u = q.front();
q.pop_front();
vis[u] = false;
for(int i = head[u]; i != -; i = E[i].last)
{
int v = E[i].to;
if(E[i].f && dis[v] > dis[u] + E[i].c)
{
dis[v] = dis[u] + E[i].c, pre[v] = i;
flow[v] = min(flow[u], E[i].f);
if(!vis[v])
{
vis[v] = true;
if(!q.empty() && dis[v] < dis[q.front()]) q.push_front(v);
else q.push_front(v);
}
}
}
}
if(dis[t] >= INF) return false;
else return true;
} void Max_flow()
{
while(SPFA())
{
int v = pre[t];
while()
{
E[v].f -= flow[t];
E[v ^ ].f += flow[t];
if(E[v ^ ].to == s) break;
v = pre[E[v ^ ].to];
}
ans += flow[t];
cost += flow[t] * dis[t];
}
} void Get_input()
{
for(int i = ; i <= n; i ++)
{
string s; cin >> s;
for(int j = ; j < m; j ++)
a[i][j + ] = s[j] - '';
}
for(int i = ; i <= n; i ++)
{
string s; cin >> s;
for(int j = ; j < m; j ++)
b[i][j + ] = s[j] - '';
}
for(int i = ; i <= n; i ++)
{
string s; cin >> s;
for(int j = ; j < m; j ++)
c[i][j + ] = s[j] - '';
}
} void Connect()
{
for(int i = ; i <= n; i ++)
for(int j = ; j <= m; j ++)
{
int u = Get_id(i, j);
if(a[i][j]) tem ++, add(s, u, , );
if(b[i][j]) fans ++, add(u, t, , );
if(a[i][j] == b[i][j])
{
add(u + size, u, c[i][j] / , );
add(u, u + * size, c[i][j] / , );
}
else if(b[i][j])
{
add(u + size, u, (c[i][j] + ) / , );
add(u, u + * size, c[i][j] / , );
}
else if(a[i][j])
{
add(u + size, u, c[i][j] / , );
add(u, u + * size, (c[i][j] + ) / , );
}
for(int k = ; k <= ; k ++)
{
int x = i + dx[k], y = j + dy[k];
if(x < || x > n || y < || y > m) continue;
add(u + * size, Get_id(x, y) + size, INF, );
}
}
} int main()
{
scanf("%d%d", &n, &m);
init();
t = n * m * + , size = n * m;
Get_input();
Connect();
if(tem != fans)
{
printf("-1\n");
return ;
}
Max_flow();
if(ans == fans) printf("%d", cost >> );
else printf("-1\n");
return ;
}

【题解】CQOI2012交换棋子的更多相关文章

  1. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  2. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  3. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  4. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  5. BZOJ2668:[CQOI2012]交换棋子——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2668 https://www.luogu.org/problemnew/show/P3159#sub ...

  6. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...

  7. [CQOI2012]交换棋子 网络流

    ---题面--- 题解: 一开始很快想出了一个接近正解的建图方法,但其实是错误的,不过还是骗了70分_(:зゝ∠)_ 首先我们可以观察到棋子有限,但费用多种,其实也就相当于限制了流量,找最小费用 对于 ...

  8. BZOJ2668:[CQOI2012]交换棋子(费用流)

    题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...

  9. [luoguP3159] [CQOI2012]交换棋子(最小费用最大流)

    传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: ...

随机推荐

  1. html样式不兼容 详解(转)

    网站对火狐不兼容的原因以及解决的方法 1.DOCTYPE 影响 CSS 处理 2.FF: div 设置 margin-left, margin-right 为 auto 时已经居中, IE 不行 3. ...

  2. JS高级. 01 复习JS基础

    1. JavaScript 包含: ____, ____, 和 ____. 2. JavaScript 的基本类型有 ____, ____, 和 ____. 3. JavaScript 的复合类型有 ...

  3. yii 自带RBAC

    common:中加 'authManager' => [ 'class' => 'yii\rbac\DbManager', 'itemTable' => 'auth_item', ' ...

  4. 第四课:PHP 变量

    变量指程序中使用的数值是可以变化的量,与常量(一旦被定义,就无法改变)相反. 变量是用于存储信息的"容器": 实例 <?php $x=5; $y=6; $z=$x+$y; e ...

  5. 从0开始 java 网站开发(jsp)【1】

    前提:安装java 并配置环境变量 java下载地址: http://www.java.com/zh_CN/ 环境变量配置 本地PC路径: 电脑--属性--高级--环境变量 在系统变量中: 新建 名: ...

  6. python2.7练习小例子(十五)

        15):题目:输出指定格式的日期.     程序分析:使用 datetime 模块.     程序源代码: #!/usr/bin/python # -*- coding: UTF-8 -*- ...

  7. 笔记-python-常见特殊变量

    笔记-python-常见特殊变量 类似__xx,以双下划线开头的实例变量名,就变成了一个私有变量(private),只有内部可以访问,外部不能访问: 类似__xx__,以双下划线开头,并且以双下划线结 ...

  8. 【数据库】 SQL 通配符

    [数据库] SQL 通配符 1. % : 替代一个或多个字符 2. _ : 仅替代一个字符 3. [] : 字符列中的任何单一字符 4. [^charlist] 或者 [!charlist]  : 不 ...

  9. Django笔记 —— Admin(Django站点管理界面)

    最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...

  10. 最火的.NET开源项目[转]

    综合类 微软企业库 微软官方出品,是为了协助开发商解决企业级应用开发过程中所面临的一系列共性的问题, 如安全(Security).日志(Logging).数据访问(Data Access).配置管理( ...