Spfa+DP【p2149】[SDOI2009]Elaxia的路线
Description
最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。
Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。
现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。
Input
第一行:两个整数N和M(含义如题目描述)。
第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ y2 ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。
接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。
Output
一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)
一句话题意,求两对点间最短路的最长公共路径.
首先需要明确的是,我们需要跑最短路.
先跑出第一组点对之间的最短路,标记最短路上的边,然后再跑第二组点对的最短路,最后需要再小小的记录一下答案即可.
注意\(to[u]\)代表到达\(u\)这个节点的最长公共路径.
每次取\(max\)即可,应该不是很难理解,就不过多解释了.
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#define int long long
#define clear(a,b) memset(a,b,sizeof a)
#define N 2005
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,a,b,c,d,dis[N],head[N],tot=-1;
struct cod{int u,v,w,flg;}edge[N*N];
bool vis[N];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
}
inline void spfa(int s)
{
clear(dis,0x7f);clear(vis,0);
dis[s]=0;vis[s]=true;
queue<int>q;q.push(s);
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=false;
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]>dis[u]+edge[i].w)
{
dis[edge[i].v]=dis[u]+edge[i].w;
if(!vis[edge[i].v])
{
vis[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
}
inline void calc()
{
clear(vis,0);
queue<int>q;q.push(b);vis[b]=true;
while(!q.empty())
{
int u=q.front();q.pop();
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]+edge[i].w==dis[u])
{
edge[i].flg=edge[i^1].flg=1;
if(!vis[edge[i].v])
{
vis[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
}
bool inq[N];
int to[N];
inline int ans()
{
R int ans=0;clear(vis,0);
queue<int>q;q.push(d);vis[d]=inq[d]=true;
while(!q.empty())
{
int u=q.front();q.pop();inq[u]=false;
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]+edge[i].w==dis[u])
{
if(edge[i].flg and to[edge[i].v]<to[u]+edge[i].w)
{
to[edge[i].v]=to[u]+edge[i].w;
ans=max(ans,to[edge[i].v]);
if(!inq[edge[i].v])
{
inq[edge[i].v]=true;
q.push(edge[i].v);
}
}
if(!vis[edge[i].v])
{
vis[edge[i].v]=inq[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
return ans;
}
signed main()
{
in(n),in(m);clear(head,-1);
in(a),in(b),in(c),in(d);
for(R int i=1,x,y,z;i<=m;i++)
{
in(x),in(y),in(z);
add(x,y,z);add(y,x,z);
}
spfa(a);;calc();spfa(c);
printf("%lld\n",ans());
}
Spfa+DP【p2149】[SDOI2009]Elaxia的路线的更多相关文章
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
- P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- Luogu P2149 [SDOI2009]Elaxia的路线 | 图论
题目链接 题解: 题面中给了最简洁清晰的题目描述:"求无向图中,两对点间最短路的最长公共路径". 对于这个问题我们可以先考虑图中的哪些边对这两对点的最短路产生了贡献. 比如说下面这 ...
- 洛谷—— P2149 [SDOI2009]Elaxia的路线
https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...
- P2149 [SDOI2009]Elaxia的路线[最长公共路径]
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP
[BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
随机推荐
- 【题解】SCOI2010幸运数字
最近在学习容斥相关,于是就看到了这个题.一开始以为是补集转化,但是观察一下马上发现不可行,好像直接做会比较容易一些.一个数满足要求的充要条件即为是一个幸运数字的倍数,那么容斥可以轻松搞定,只要枚举是一 ...
- springMvc--请求的跳转和传值
springMvc--请求的跳转和传值 目录 forword跳转页面的三种方式 1.使用serlvet 2.使用Model对象 3.使用ModelAndView redirect跳转到页面 使用ser ...
- poj2814-拨钟问题-C语言-枚举算法
#include <stdio.h> #include <stdlib.h> /* 首先,我们考虑用长度为9的数组表示表盘的状态以及调表的操作,终止的条件是表盘状态数组所有元素 ...
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- java md5加密 不依赖base64包
/** * MD5 加密 */ private String getMD5Str(String str) { MessageDigest messageDigest = null; try { mes ...
- 前端部署: nginx配置
前提:nginx 已安装 简介:nginx(engine x) 是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Ram ...
- Win7/8 绿色软件开机启动
在查找番茄工作法PC端软件时,发现了淡高的文章win8绿色软件开机启动,试用了一下wintabs,的确好用! 另外,office软件中有一款 OFFICE tabs的插件,标签式的管理,非常方便快捷, ...
- mybatis基本流程、jdbc连接、ps:附mybatis(乐观锁)实现
一.前言 Mybatis和Hibernate一样,是一个优秀的持久层框架.已经说过很多次了,原生的jdbc操作存在大量的重复性代码(如注册驱动,创建连接,创建statement,结果集检测等).框架的 ...
- linux 系统函数之 (dirname, basename)【转】
转自:http://blog.csdn.net/peter_cloud/article/details/9308333 版权声明:本文为博主原创文章,未经博主允许不得转载. 除非你的原件考虑跨平台. ...
- onvif实现
前言 负责开发了公司的onvif,一个人从0开始写的,花了两个月 !!!下面是我的总结. onvif介绍 ONVIF[Open Network Video Interface Forum](开放型网络 ...