Spfa+DP【p2149】[SDOI2009]Elaxia的路线
Description
最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。
Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。
现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。
Input
第一行:两个整数N和M(含义如题目描述)。
第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ y2 ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。
接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。
Output
一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)
一句话题意,求两对点间最短路的最长公共路径.
首先需要明确的是,我们需要跑最短路.
先跑出第一组点对之间的最短路,标记最短路上的边,然后再跑第二组点对的最短路,最后需要再小小的记录一下答案即可.
注意\(to[u]\)代表到达\(u\)这个节点的最长公共路径.
每次取\(max\)即可,应该不是很难理解,就不过多解释了.
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#define int long long
#define clear(a,b) memset(a,b,sizeof a)
#define N 2005
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,a,b,c,d,dis[N],head[N],tot=-1;
struct cod{int u,v,w,flg;}edge[N*N];
bool vis[N];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
}
inline void spfa(int s)
{
clear(dis,0x7f);clear(vis,0);
dis[s]=0;vis[s]=true;
queue<int>q;q.push(s);
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=false;
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]>dis[u]+edge[i].w)
{
dis[edge[i].v]=dis[u]+edge[i].w;
if(!vis[edge[i].v])
{
vis[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
}
inline void calc()
{
clear(vis,0);
queue<int>q;q.push(b);vis[b]=true;
while(!q.empty())
{
int u=q.front();q.pop();
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]+edge[i].w==dis[u])
{
edge[i].flg=edge[i^1].flg=1;
if(!vis[edge[i].v])
{
vis[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
}
bool inq[N];
int to[N];
inline int ans()
{
R int ans=0;clear(vis,0);
queue<int>q;q.push(d);vis[d]=inq[d]=true;
while(!q.empty())
{
int u=q.front();q.pop();inq[u]=false;
for(R int i=head[u];i!=-1;i=edge[i].u)
{
if(dis[edge[i].v]+edge[i].w==dis[u])
{
if(edge[i].flg and to[edge[i].v]<to[u]+edge[i].w)
{
to[edge[i].v]=to[u]+edge[i].w;
ans=max(ans,to[edge[i].v]);
if(!inq[edge[i].v])
{
inq[edge[i].v]=true;
q.push(edge[i].v);
}
}
if(!vis[edge[i].v])
{
vis[edge[i].v]=inq[edge[i].v]=true;
q.push(edge[i].v);
}
}
}
}
return ans;
}
signed main()
{
in(n),in(m);clear(head,-1);
in(a),in(b),in(c),in(d);
for(R int i=1,x,y,z;i<=m;i++)
{
in(x),in(y),in(z);
add(x,y,z);add(y,x,z);
}
spfa(a);;calc();spfa(c);
printf("%lld\n",ans());
}
Spfa+DP【p2149】[SDOI2009]Elaxia的路线的更多相关文章
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
- P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- Luogu P2149 [SDOI2009]Elaxia的路线 | 图论
题目链接 题解: 题面中给了最简洁清晰的题目描述:"求无向图中,两对点间最短路的最长公共路径". 对于这个问题我们可以先考虑图中的哪些边对这两对点的最短路产生了贡献. 比如说下面这 ...
- 洛谷—— P2149 [SDOI2009]Elaxia的路线
https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...
- P2149 [SDOI2009]Elaxia的路线[最长公共路径]
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP
[BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
随机推荐
- BZOJ2753 [SCOI2012]滑雪与时间胶囊 【kruskal】
题目链接 BZOJ2753 题解 完了我连\(kruskal\)裸题都做不出来了.. 题目是求最小树形图,即有向图最小生成树 我们不能直接上\(kruskal\),而要保证先加入前面的点, 所以我们排 ...
- Link Cat Tree (连喵树) 学习笔记
Link Cat Tree 一.感性定义 所谓连喵树,即一种对森林支持修改,查询,连边,删边等操作的数据结构(姑且算她是吧).她用一颗颗互相连接的辅助树维护原森林的信息,辅助树相互连接的边叫虚边,辅助 ...
- ubuntu使用su切换root用户提示“认证失败”
在虚拟机上安装了ubuntu,安装时提示设置密码,也设置了,但是在终端操作时,遇到权限不够的问题,于是就想到就是要切换root用户,获取最高权限. 当我使用 su 切换到root用户时,提示我输入密码 ...
- Leetcode 45. Jump Game II(贪心)
45. Jump Game II 题目链接:https://leetcode.com/problems/jump-game-ii/ Description: Given an array of non ...
- webkit在vs2008中编译
转载自:http://xjchilli.blog.163.com/blog/static/4534773920091016115533158/ webkit的官方网站写的webkit需要在vs2005 ...
- 2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂
Sample Input 3 1 3 5 2 1 3 5 1 3 5 99 69 Sample Output Case #1: No Case #2: Yes Case #3: Yes Hint ...
- 转载--博弈问题及SG函数(真的很经典)
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- iconv 转化编码
basename dirname 使用以下命令,无法处理同名文件: grep "charset=utf-8" filelist_iconv.txt | awk -F':' ...
- C++中 相对路径与绝对路径 斜杠 '/' 与反斜杠 '\'的区别
文件路径正斜杠和反斜杠 正斜杠,又称左斜杠,符号是"/":反斜杠,也称右斜杠,符号是"\".文件路径的表示可以分为绝对路径和相对路径: 1.绝对路径表示相对容易 ...
- iOS开发 贝塞尔曲线UIBezierPath(后记)
使用CAShapeLayer与UIBezierPath可以实现不在view的drawRect方法中就画出一些想要的图形 . 1:UIBezierPath: UIBezierPath是在 UIKit 中 ...