POJ:最长上升子序列
Title:
http://poj.org/problem?id=2533
Description
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
这个是经典的动态规划题,像我这种渣渣,连这个都要看好久,好吧,其实简单的DP还好,就是nlogn复杂度的,看了好久。嗯,但是呢,网上的那些代码都没有我写的简洁,好吧,这也是聊以自慰呢。。
思路(1): O(n^2)
令A[i]表示输入第i个元素,D[i]表示从A[1]到A[i]中以A[i]结尾的最长子序列长度。对于任意的0 < j <= i-1,如果A(j) < A(i),则A(i)可以接在A(j)后面形成一个以A(i)结尾的新的最长上升子序列。对于所有的 0 < j <= i-1,我们需要找出其中的最大值。
DP状态转移方程:
D[i] = max{1, D[j] + 1} (j = 1, 2, 3, ..., i-1 且 A[j] < A[i])
解释一下这个方程,i, j在范围内:
如果 A[j] < A[i] ,则D[i] = D[j] + 1
如果 A[j] >= A[i] ,则D[i] = 1
int main(){
int a[SIZE];
int d[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++)
cin>>a[i];
int m = INT_MIN;
for (int i = ;i < n; i++){
d[i] = ;
for (int j = ; j < i; j++){
if (a[j] < a[i])
d[i] = max(d[i],d[j]+);
}
m = max(m,d[i]);
}
cout<<m<<endl;
//system("pause");
}
(2)nlogn的解法。
重新定义下dp[i]
dp[i] 的意思是所有长度为i+1的LIS中末尾元素的最小值
那么最开始,dp[0] = a[0]
因为dp是一个有序数组,所以每次我们都去这个数组中寻找a[i]的位置,例如dp = {2,4,6},如果a[i] = 5,那么a[i]的位置应该是4~6之间,所以返回index = 2.怎么理解呢,dp[i]的定义!所以a[i] = 5,那么有两个长度的最小值都比a[i]小,那加入a[i],这个长度肯定就是3了,然后这个index=2,同时,比较5和6,我们要选择最小的值。我的搜索代码包含了边界的情况,因此,在主函数中就不需要判断。
int search(int * s, int t,int l, int r){
while (l <= r){
int m = (l + r)/;
if (s[m] == t){
return m;
}else if (s[m] < t){
l++;
}else{
r--;
}
}
return l;
}
int main(){
int a[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++){
cin>>a[i];
}
int stack[SIZE]; fill(stack,stack+SIZE,INT_MAX);
stack[] = a[];
int cur_index = ;
for (int i = ; i < n; i++){
int j = search(stack,a[i],,cur_index);
stack[j] = min(stack[j],a[i]);
if (j == cur_index)
cur_index++;
}
cout<<cur_index;
//system("pause");
}
POJ:最长上升子序列的更多相关文章
- OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence
1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...
- poj 2533 Longest Ordered Subsequence 最长递增子序列
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]
题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...
- POJ 1159 Palindrome(最长公共子序列)
Palindrome [题目链接]Palindrome [题目类型]最长公共子序列 &题解: 你做的操作只能是插入字符,但是你要使最后palindrome,插入了之后就相当于抵消了,所以就和在 ...
- POJ 1458 最长公共子序列(dp)
POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...
- [poj 1533]最长上升子序列nlogn树状数组
题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
随机推荐
- oracle一些函数
NVL( string1, replace_with):判断string1是否为空,如果是空就用replace_with代替. NVL2(E1, E2, E3)的功能为:如果E1为NULL,则函数返回 ...
- MATLAB——axis
MATLAB——axis axis中文为“轴”之意,在matlab中用于控制坐标轴的范围和样式(颜色等). axis([XMIN XMAX YMIN YMAX]) 设置当前所绘图像的x轴和y轴的范围. ...
- PHP开发框架[流行度排名]
在PHP开发中,选择合适的框架有助于加快软件开发,节约宝贵的项目时间,让开发者专注于功能的实现上.Sitepoint网站做了一个小的调查,结果显示最流行的PHP框架前三甲为:Laravel.Phalc ...
- 【入门篇】Nginx + FastCGI 程序(C/C++) 搭建高性能web service的Demo及部署发布
http://blog.csdn.net/allenlinrui/article/details/19419721 1.介绍 Nginx - 高性能web server,这个不用多说了,大家都 ...
- POJ 1979 Red and Black(水题,递归)
一开始理解错题意了,以为是走过的砖不能再重复走,最多能走多少个黑砖,结果写的递归陷入死循环...后来才明白原来可以重复走,问可以到达的磁砖数. #include <iostream> #i ...
- JsRender系列demo(3)-自定义容器
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- C#接口的经典案例
C#接口(interface)实例子(简单而经典)2008/12/04 10:04using System; using System.Collections.Generic; using Syste ...
- Oracle的学习二:表管理(数据类型、创建/修改表、添加/修改/删除数据、数据查询)
1.Oracle表的管理 表名和列名的命名规则: 必须以字母开头: 长度不能超过30个字符: 不能使用oracle的保留字: 只能使用如下字符:A-Z, a-z, 0-9, $, # 等. Oracl ...
- Java注解全面解析
1.基本语法 注解定义看起来很像接口的定义.事实上,与其他任何接口一样,注解也将会编译成class文件. @Target(ElementType.Method) @Retention(Retentio ...
- 1829 A Bug's Life
A Bug's Life Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...