Title:

http://poj.org/problem?id=2533

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4
这个是经典的动态规划题,像我这种渣渣,连这个都要看好久,好吧,其实简单的DP还好,就是nlogn复杂度的,看了好久。嗯,但是呢,网上的那些代码都没有我写的简洁,好吧,这也是聊以自慰呢。。
思路(1): O(n^2)

令A[i]表示输入第i个元素,D[i]表示从A[1]到A[i]中以A[i]结尾的最长子序列长度。对于任意的0 <  j <= i-1,如果A(j) < A(i),则A(i)可以接在A(j)后面形成一个以A(i)结尾的新的最长上升子序列。对于所有的 0 <  j <= i-1,我们需要找出其中的最大值。

DP状态转移方程:

D[i] = max{1, D[j] + 1} (j = 1, 2, 3, ..., i-1 且 A[j] < A[i])

解释一下这个方程,i, j在范围内:

如果 A[j] < A[i] ,则D[i] = D[j] + 1

如果 A[j] >= A[i] ,则D[i] = 1

int main(){
int a[SIZE];
int d[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++)
cin>>a[i];
int m = INT_MIN;
for (int i = ;i < n; i++){
d[i] = ;
for (int j = ; j < i; j++){
if (a[j] < a[i])
d[i] = max(d[i],d[j]+);
}
m = max(m,d[i]);
}
cout<<m<<endl;
//system("pause");
}

(2)nlogn的解法。

重新定义下dp[i]

dp[i] 的意思是所有长度为i+1的LIS中末尾元素的最小值

那么最开始,dp[0] = a[0]

因为dp是一个有序数组,所以每次我们都去这个数组中寻找a[i]的位置,例如dp = {2,4,6},如果a[i] = 5,那么a[i]的位置应该是4~6之间,所以返回index = 2.怎么理解呢,dp[i]的定义!所以a[i] = 5,那么有两个长度的最小值都比a[i]小,那加入a[i],这个长度肯定就是3了,然后这个index=2,同时,比较5和6,我们要选择最小的值。我的搜索代码包含了边界的情况,因此,在主函数中就不需要判断。

int search(int * s, int t,int l, int r){
while (l <= r){
int m = (l + r)/;
if (s[m] == t){
return m;
}else if (s[m] < t){
l++;
}else{
r--;
}
}
return l;
}
int main(){
int a[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++){
cin>>a[i];
}
int stack[SIZE]; fill(stack,stack+SIZE,INT_MAX);
stack[] = a[];
int cur_index = ;
for (int i = ; i < n; i++){
int j = search(stack,a[i],,cur_index);
stack[j] = min(stack[j],a[i]);
if (j == cur_index)
cur_index++;
}
cout<<cur_index;
//system("pause");
}
												

POJ:最长上升子序列的更多相关文章

  1. OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence

    1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...

  2. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  3. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  4. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]

    题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...

  6. POJ 1159 Palindrome(最长公共子序列)

    Palindrome [题目链接]Palindrome [题目类型]最长公共子序列 &题解: 你做的操作只能是插入字符,但是你要使最后palindrome,插入了之后就相当于抵消了,所以就和在 ...

  7. POJ 1458 最长公共子序列(dp)

    POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...

  8. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  9. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

随机推荐

  1. 【BZOJ】【2820】YY的GCD

    莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...

  2. C# 虚方法 与 隐藏方法(new) 区别

    重写和隐藏的定义: 重写:继承时发生,在子类中重新定义父类中的方法,子类中的方法和父类的方法是一样的          例如:基类方法声明为virtual(虚方法),派生类中使用override申明此 ...

  3. Java Socket 基础例子

    1.服务器端代码 package com.lanber.socket; import java.io.DataInputStream; import java.io.DataOutputStream; ...

  4. JS内存管理测试

    打开调试器,切换到timer,点击左下角的record按钮开始,切换到memory视图,在文档中点击鼠标左右键,看股价走势图 function Allocate(kbs){ this.mem = ne ...

  5. ajax post 跨域

    H5页面永远无法避开跨域问题-- php中, header('Access-Control-Allow-Origin:*'); 搞定. 兼容性先不管了. 来自为知笔记(Wiz)

  6. 《head first java 》读书笔记(五)

    Updated 2014/04/09 P581--P615 如何组织.包装与部署Java程序. 部署的选择 本机: Executable Jar 两者之间的结合: Web Start, RMI app ...

  7. 前端学习笔记汇总(之merge方法)

    学习笔记 关于Jquery的merge方法 话不多说,先上图 使用jquery时,其智能提示如上,大概意思就是合并first和second两个数组,得到的结果是first+(second去重后的结果) ...

  8. crontab定时运行git命令 更新代码库

    Q:  http://stackoverflow.com/questions/7994663/git-push-via-cron    I'm trying to run a git push fro ...

  9. Xamarin.Android 入门之:Android API版本设置

    一.引言 Xamarin.Android有几个Android API级别设置,确定多个版本的Android应用程序的兼容性.本博客解释了这些设置意味着什么,如何配置它们,以及它们在运行时对您的应用程序 ...

  10. Java多线程3:Thread中start()和run()的区别

    原文:http://www.cnblogs.com/skywang12345/p/3479083.html start() 和 run()的区别说明start():它的作用是启动一个新线程,新线程会执 ...