POJ:最长上升子序列
Title:
http://poj.org/problem?id=2533
Description
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
这个是经典的动态规划题,像我这种渣渣,连这个都要看好久,好吧,其实简单的DP还好,就是nlogn复杂度的,看了好久。嗯,但是呢,网上的那些代码都没有我写的简洁,好吧,这也是聊以自慰呢。。
思路(1): O(n^2)
令A[i]表示输入第i个元素,D[i]表示从A[1]到A[i]中以A[i]结尾的最长子序列长度。对于任意的0 < j <= i-1,如果A(j) < A(i),则A(i)可以接在A(j)后面形成一个以A(i)结尾的新的最长上升子序列。对于所有的 0 < j <= i-1,我们需要找出其中的最大值。
DP状态转移方程:
D[i] = max{1, D[j] + 1} (j = 1, 2, 3, ..., i-1 且 A[j] < A[i])
解释一下这个方程,i, j在范围内:
如果 A[j] < A[i] ,则D[i] = D[j] + 1
如果 A[j] >= A[i] ,则D[i] = 1
int main(){
int a[SIZE];
int d[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++)
cin>>a[i];
int m = INT_MIN;
for (int i = ;i < n; i++){
d[i] = ;
for (int j = ; j < i; j++){
if (a[j] < a[i])
d[i] = max(d[i],d[j]+);
}
m = max(m,d[i]);
}
cout<<m<<endl;
//system("pause");
}
(2)nlogn的解法。
重新定义下dp[i]
dp[i] 的意思是所有长度为i+1的LIS中末尾元素的最小值
那么最开始,dp[0] = a[0]
因为dp是一个有序数组,所以每次我们都去这个数组中寻找a[i]的位置,例如dp = {2,4,6},如果a[i] = 5,那么a[i]的位置应该是4~6之间,所以返回index = 2.怎么理解呢,dp[i]的定义!所以a[i] = 5,那么有两个长度的最小值都比a[i]小,那加入a[i],这个长度肯定就是3了,然后这个index=2,同时,比较5和6,我们要选择最小的值。我的搜索代码包含了边界的情况,因此,在主函数中就不需要判断。
int search(int * s, int t,int l, int r){
while (l <= r){
int m = (l + r)/;
if (s[m] == t){
return m;
}else if (s[m] < t){
l++;
}else{
r--;
}
}
return l;
}
int main(){
int a[SIZE];
int n;
cin>>n;
for (int i = ; i < n; i++){
cin>>a[i];
}
int stack[SIZE];
fill(stack,stack+SIZE,INT_MAX);
stack[] = a[];
int cur_index = ;
for (int i = ; i < n; i++){
int j = search(stack,a[i],,cur_index);
stack[j] = min(stack[j],a[i]);
if (j == cur_index)
cur_index++;
}
cout<<cur_index;
//system("pause");
}
POJ:最长上升子序列的更多相关文章
- OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence
1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...
- poj 2533 Longest Ordered Subsequence 最长递增子序列
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]
题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...
- POJ 1159 Palindrome(最长公共子序列)
Palindrome [题目链接]Palindrome [题目类型]最长公共子序列 &题解: 你做的操作只能是插入字符,但是你要使最后palindrome,插入了之后就相当于抵消了,所以就和在 ...
- POJ 1458 最长公共子序列(dp)
POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...
- [poj 1533]最长上升子序列nlogn树状数组
题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
随机推荐
- hibernate4.0中SessionFactory的创建
创建SessionFactory 首先创建Configuration对象,主要方式是: new Configuration().configure() 默认情况下Hibernate会去classPat ...
- soap 路由
下面主要通过项目实例来具体阐述如何实现wse路由和一些项目开发中的细节.本人水平有限,有不对的地方,请朋友们不吝赐教. 在开始项目之前,先了解一下路由的概念,所谓"路由",是指把数 ...
- Unity3dBug - OnEnable
最近 项目 因为 使用 active 代替 instantiate机制,很多时候 OnEnable 代理 OnStart. 然后发现一个 奇怪的 问题 void Awake() { Debug.Log ...
- Properties --- C++读配置信息的类
http://blog.csdn.net/billow_zhang/article/details/4304980 在开发实践中,积累了一些通用的C++ 类库,在此写出来给大家分享.也希望能给出更好的 ...
- Chpater 10: Sorting
Internal Sort: Bubble O(n2) Selection O(n2) Insertion O(n2) Shell O(nlogn) Merge O(nlogn) Heap O(nl ...
- Struts2 常用的常量配置
在struts2-core-2.1.8.1.jar的org.apache.struts2包下面的default.properties资源文件里可以查到常用的常量配置,这些不用刻意的记住:忘记的时候可以 ...
- hdu 4111 Alice and Bob 博弈论
这里有2种方法: 方法一:求SG函数 sg[i][j]:i表示1的个数,j表示合并操作的步数. 这共有4种操作: 1.消除一个1: 2.减掉一个1: 3.合并2个1: 4.把1合并到另外不是1中. 代 ...
- Java 按字节获得字符串(中文)长度
引自:http://songjianyong.iteye.com/blog/1552973 package cn.com.songjy.test; import java.io.Unsupported ...
- spring autoWire注解
1.autowire注解,可以用来获得applicationContext,ResourceLoader,BeanFactory的注入 autoWire会获得相应资源 2.autoWire注解还可以用 ...
- Linux autoconf和automake使用
作为Linux下的程序开发人员,一定都遇到过Makefile,用make命令来编译自己写的程序确实是很方便.一般情况下,大家都是手工写一个简单Makefile,如果要想写出一个符合自由软件惯例的Mak ...