Problem Description
Here is a function f(x):
   int f ( int x ) {
    if ( x == 0 ) return 0;
    return f ( x / 10 ) + x % 10;
   }

Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10
9), how many integer x that mod f(x) equal to 0.

 
Input
The first line has an integer T (1 <= T <= 50), indicate the number of test cases.

Each test case has two integers A, B.

 
Output
For each test case, output only one line containing the case number and an integer indicated the number of x.

 
Sample Input
2
1 10
11 20
 
Sample Output
Case 1: 10
Case 2: 3
 

题意:计算区间内一个数字各位之和能整除该数字的个数

思路:

分别计算出[1, b]中符合条件的个数和[1, a-1]中符合条件的个数。

d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数,那么就有方程

d[l+1][i+x][j][(k*10+x)%j] += d[l][i][j][k]

预处理出d[l][i][j][k],然后再逐位统计即可

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int bit[10];
int dp[10][82][82][82];
//d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数
void set()
{
int i,j,k,l,x;
for(i = 1; i<=81; i++)
dp[0][0][i][0] = 1;
for(l = 0; l<9; l++)
for(i = 0; i<=l*9; i++)
for(j = 1; j<=81; j++)
for(k = 0; k<j; k++)
for(x = 0; x<=9; x++)
dp[l+1][i+x][j][(k*10+x)%j] += dp[l][i][j][k];
} int solve(int n)
{
if(!n)
return 0;
int ans,i,j,k,len;
int sum,tem1,tem2,s,bit[10],r;
len = sum = ans = 0;
tem1 = tem2 = n;
s = 1;
while(tem1)
{
bit[++len] = tem1%10;
tem1/=10;
sum+=bit[len];//每位数之和
}
if(n%sum==0)//本身要先看是否整除
ans++;
for(i = 1; i<=len; i++)
{
sum-=bit[i];//将该位清0
tem2/=10;
s*=10;
tem1 = tem2*s;
for(j = 0; j<bit[i]; j++) //枚举该位的状况
{
for(k = sum+j; k<=sum+j+9*(i-1); k++) //该位与更高位的和,而比该位低的和择优9*(i-1)种
{
if(!k)//和为0的状况不符合
continue;
r = tem1%k;//现在该数对各位和进行取余
if(r)
r = k-r;//余数大于0,那么k-dd得到的数肯定能被t整除
ans+=dp[i-1][k-sum-j][k][r];//加上个数
}
tem1+=s/10;//标记现在算到哪里,例如1234,一开始t是1230,然后1231,1232,1233,1234,接下来1200,就是1210,1220,1230
}
}
return ans;
} int main()
{
int T,l,r,cas = 1;
set();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&l,&r);
printf("Case %d: %d\n",cas++,solve(r)-solve(l-1));
} return 0;
}

HDU4389:X mod f(x)(数位DP)的更多相关文章

  1. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  2. hdu4734 F(x)(数位dp)

    题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 4734 F(x) ★(数位DP)

    题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...

  4. 【hdu4734】F(x) 数位dp

    题目描述 对于一个非负整数 $x=​​\overline{a_na_{n-1}...a_2a_1}$ ,设 $F(x)=a_n·2^{n-1}+a_{n-1}·2^{n-2}+...+a_2·2^1+ ...

  5. [hdu4734]F(x)数位dp

    题意:求0~f(b)中,有几个小于等于 f(a)的. 解题关键:数位dp #include<bits/stdc++.h> using namespace std; typedef long ...

  6. F(x) 数位dp

    Problem Description For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight ...

  7. HDU-4734 F(x) 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数.f[i][j]表示 i 位数时 ...

  8. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

  9. hdu4389 X mod f(x)

    链接 这个题因为总和加起来是比较小的9*9 = 81  这样可以保留前面枚举的数对所有的可能出现的和的余数,然后依次向下找. #include <iostream> #include< ...

随机推荐

  1. Java读取本地文件进行unicode解码

    工具使用: package test.opservice; import eh.util.MapValueUtil; import java.io.BufferedReader; import jav ...

  2. android----sqlite中的 query() 参数分析

    public Cursor query (String table, String[] columns, String selection, String[] selectionArgs, Strin ...

  3. 幻灯片slider

    <script src="{$GetInstallDir}web/scripts/jquery-1.3.1.js"></script> <style& ...

  4. 游刃于MVC、WCF中的Autofac

    为了程序的健壮性.扩展性.可维护性,依赖抽象而不是具体实现类等等,于是我选择了Autofac依赖注入容器 就是这个工厂来降低耦合.之前买东西是自己去超市,现在呢 我需要什么东西,他们给送过来直接拿到了 ...

  5. arcgis for server 登陆manager失败解决办法

    版本是 arcgis for server 10.02 症状 1. manager网页无法打开http://localhost:6080/arcgis/manager/ 2. 查看服务无法启动,启动后 ...

  6. centos 7 有点意思

    Centos 7 防火墙 Centos尼马换了防火墙,名叫firewalld,还有iptables命令,这就叫坑爹.整了半个世纪才知道,他换了防火墙.添加滤镜,停止iptables都打不开80端口,简 ...

  7. UVA 714 Copying Books 二分

    题目链接: 题目 Copying Books Time limit: 3.000 seconds 问题描述 Before the invention of book-printing, it was ...

  8. 【BZOJ】【3158】千钧一发

    网络流/最小割 这题跟BZOJ 3275限制条件是一样的= =所以可以用相同的方法去做……只要把边的容量从a[i]改成b[i]就行了- (果然不加当前弧优化要略快一点) /************** ...

  9. uva 10106

    尝试一下java 的大数类 import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { ...

  10. 微信变声器(WeChat Voice)会是营销新利器吗

    微信变声器(WeChat Voice)2.0 Android版开始内测了,时间从2015年5月20日 - 2015年6月20日,使用微信变声器改变你的声音,并分享给好友! 无论你是想装可爱还是恶搞,微 ...