题目:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

链接: http://leetcode.com/problems/triangle/

题解:

自底向上dp。虽然是个简单题, 但自己现在也能写出一些比较简练的代码了,是进步,要肯定。晚上东方串店撸串去!

Time Complexity - O(n),Space Complexity - O(1)。

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle == null || triangle.size() == 0)
return 0; for(int i = triangle.size() - 2; i >= 0; i--) {
for(int j = 0; j < triangle.get(i).size(); j++) {
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
}
} return triangle.get(0).get(0);
}
}

二刷:

一般来说对于题目给出的数据结构比如Tree或者List<>不要轻易修改。我们另外建立一个数组来dp就好了。这里主要使用了自底向上的思路,先初始化dp数组为triangle的最后一行,再用转移方程dp[i] = triangle.get(i).get(j) + Math.min(dp[i], dp[i + 1])就好了。要注意边界条件。

Java:

Time Complexity - O(n),Space Complexity - O(n)。

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return Integer.MIN_VALUE;
}
int rowNum = triangle.size();
List<Integer> lastRow = triangle.get(rowNum - 1);
int[] paths = new int[rowNum]; for (int i = 0; i < lastRow.size(); i++) {
paths[i] = lastRow.get(i);
}
for (int i = rowNum - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
paths[j] = triangle.get(i).get(j) + Math.min(paths[j], paths[j + 1]);
}
}
return paths[0];
}
}

三刷:

Java:

in-place:

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int min = Integer.MAX_VALUE;
if (triangle == null || triangle.size() == 0) return Integer.MAX_VALUE;
for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
}
}
return triangle.get(0).get(0);
}
}

Use auxiliary list

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int min = Integer.MAX_VALUE;
if (triangle == null || triangle.size() == 0) return Integer.MAX_VALUE; List<Integer> res = new ArrayList<>(triangle.get(triangle.size() - 1)); for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
res.set(j, triangle.get(i).get(j) + Math.min(res.get(j), res.get(j + 1)));
}
}
return res.get(0);
}
}

Reference:

https://leetcode.com/discuss/5337/dp-solution-for-triangle

https://leetcode.com/discuss/10131/my-java-version-solution-with-o-n-space-accepted

https://leetcode.com/discuss/23544/my-8-line-dp-java-code-4-meaningful-lines-with-o-1-space

https://leetcode.com/discuss/20296/bottom-up-5-line-c-solution

120. Triangle的更多相关文章

  1. leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle

    118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...

  2. 【LeetCode】120. Triangle 解题报告(Python)

    [LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...

  3. LeetCode - 120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  4. [LeetCode]题解(python):120 Triangle

    题目来源 https://leetcode.com/problems/triangle/ Given a triangle, find the minimum path sum from top to ...

  5. leetcode 120 Triangle ----- java

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  6. 【LeetCode】120 - Triangle

    原题:Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacen ...

  7. LeetCode OJ 120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  8. LeetCode 120. Triangle (三角形)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  9. 120. Triangle(中等)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

随机推荐

  1. CAF(C++ actor framework)(序列化之结构体,任意嵌套STL)(一)

    User-Defined Data Types in Messages(用户自定义类型)All user-defined types must be explicitly “announced” so ...

  2. DigitalOcean(DO)购买VPS流程

    背景: 对于一个程序员来说,拥有自己的一台国外服务器是一种多么激动的事情,尽管配置不如自己电脑的1/5,但是想一想可以不用备案搭建网站,可以搭建shadow服务器,从此通过自己的服务器上网,想一想真是 ...

  3. IE6下window.location.href不跳转到相应url

    前天一同事遇到个看似很诡异的问题,就是<a href="javascript:void(0);" onclick="window.location.href=url ...

  4. Spark Streaming揭秘 Day19 架构设计和运行机制

    Spark Streaming揭秘 Day19 架构设计和运行机制 今天主要讨论一些SparkStreaming设计的关键点,也算做个小结. DStream设计 首先我们可以进行一个简单的理解:DSt ...

  5. javascript event兼容IE和FF

    事件对象在IE和FF下的兼容写法 function abc(event){ var e=event||window.event; //键盘码的捕获 var key=e.which||e.keyCode ...

  6. [Objective-C]关联(objc_setAssociatedObject、objc_getAssociatedObject、objc_removeAssociatedObjects)(转)

    转载自:http://blog.csdn.net/onlyou930/article/details/9299169 分类: Objective-C2013-07-11 11:54 3420人阅读 评 ...

  7. Webx常用接口

    最近在学Webx框架, 在了解webx的工作流程后, 必须要会使用自带的接口和类 常用的 Navigator  这个接口中只有两种类型的方法, 及重定向与转发, 一般用在screen包下的类(注意:s ...

  8. Netty多线程处理机制

    技术点描述 本文主要研究NioServerSocketChannelFactory类和NioDatagramChannelFactory类, 以及这两个类的各自作用. 由于基于pipelineFact ...

  9. C# - 高级方法参数

    可选参数 -必须有个默认值,默认值必须是字面值,常量值,新对象实例或者默认值类型值. public List<string> GetWords( string sentence, bool ...

  10. DevExpress GridControl 导出为Excel

    private void btnExport_ItemClick(object sender, EventArgs e)         {             SaveFileDialog sa ...