题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738

  题意:在有重边的无向图中,求权值最小的桥。

  注意trick就好了,ans为0时输出1,总要有一个人去丢炸弹吧。。。

 //STATUS:C++_AC_62MS_8144KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e60;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End /* Edge-Biconnected Component(可以处理重边)
iscut[]为割边集
bccno[]为双连通点集,保存为编号 */
struct Edge{
int u,v,w;
}e[*N*N];
bool iscut[*N*N];
int first[N],next[*N*N],pre[N],low[N],bccno[N];
int n,m,mt,bcnt,dfs_clock;
stack<int> s; void adde(int a,int b,int c)
{
e[mt].u=a;e[mt].v=b;e[mt].w=c;
next[mt]=first[a];first[a]=mt++;
e[mt].u=b;e[mt].v=a;e[mt].w=c;
next[mt]=first[b];first[b]=mt++;
} void dfs(int u,int fa)
{
int i,v;
pre[u]=low[u]=++dfs_clock;
s.push(u);
int cnt=;
for(i=first[u];i!=-;i=next[i]){
v=e[i].v;
if(!pre[v]){
dfs(v,u);
low[u]=Min(low[u],low[v]);
if(low[v]>pre[u])iscut[i]=true; //存在割边
}
else if(fa==v){ //反向边更新
if(cnt)low[u]=Min(low[u],pre[v]);
cnt++;
}
else low[u]=Min(low[u],pre[v]);
}
if(low[u]==pre[u]){ //充分必要条件
int x=-;
bcnt++;
while(x!=u){
x=s.top();s.pop();
bccno[x]=bcnt;
}
}
} int find_bcc()
{
int i,cnt=;
bcnt=dfs_clock=;
mem(pre,);mem(bccno,);mem(iscut,);
for(i=;i<=n;i++){
if(!pre[i]){cnt++;dfs(i,-);}
}
return cnt;
} int main(){
// freopen("in.txt","r",stdin);
int i,j,a,b,c,ans,t;
while(~scanf("%d%d",&n,&m) && (n||m))
{
mem(first,-);mt=;
for(i=;i<m;i++){
scanf("%d%d%d",&a,&b,&c);
adde(a,b,c);
} t=find_bcc();
if(t>){
printf("0\n");
continue;
} ans=INF;
for(i=;i<mt;i++){
if(iscut[i])ans=Min(ans,e[i].w);
}
printf("%d\n",ans==INF?-:(ans?ans:));
}
return ;
}

HDU-4738 Caocao's Bridges 边联通分量的更多相关文章

  1. Hdu 4738 Caocao's Bridges (连通图+桥)

    题目链接: Hdu 4738 Caocao's Bridges 题目描述: 有n个岛屿,m个桥,问是否可以去掉一个花费最小的桥,使得岛屿边的不连通? 解题思路: 去掉一个边使得岛屿不连通,那么去掉的这 ...

  2. HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4738——Caocao's Bridges——————【求割边/桥的最小权值】

     Caocao's Bridges Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  4. hdu 4738 Caocao's Bridges 图--桥的判断模板

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 4738 Caocao's Bridges

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU——4738 Caocao's Bridges

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 4738 Caocao's Bridges ——(找桥,求联通块)

    题意:给你一个无向图,给你一个炸弹去炸掉一条边,使得整个图不再联通,你需要派人去安置炸弹,且派去的人至少要比这条边上的人多.问至少要派去多少个,如果没法完成,就输出-1. 分析:如果这个图是已经是多个 ...

  9. hdu 4738 Caocao's Bridges (tarjan求桥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题目大意:给一些点,用一些边把这些点相连,每一条边上有一个权值.现在要你破坏任意一个边(要付出相 ...

  10. hdu 4738 Caocao's Bridges(桥的最小权值+去重)

    http://acm.hdu.edu.cn/showproblem.php?pid=4738 题目大意:曹操有一些岛屿被桥连接,每座都有士兵把守,周瑜想把这些岛屿分成两部分,但他只能炸毁一条桥,问最少 ...

随机推荐

  1. Flash上传文件(结合asp.net)

    一.实现原理.在某些场合,我们需要使用Flash进行“文件上传”,原因是Flash 能制作出表现力丰富的UI界面. (自负又孤陋寡闻的我在这里做一个补充:Flash使用flash.net包中的File ...

  2. 什么是HttpOnly

    1.什么是HttpOnly? 如果您在cookie中设置了HttpOnly属性,那么通过js脚本将无法读取到cookie信息,这样能有效的防止XSS攻击,具体一点的介绍请google进行搜索 2.ja ...

  3. openfire的配置

    Openfire 采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议.Openfire安装和使用都非常简单,并利用Web进行管理.单台服务器可支持上万并发用户.所以常常被 ...

  4. 概述什么是OSGi框架

    现 在越来越多的Java开发人员在谈论OSGi是有其道理的.在几年前上学的时候我进行了比较多的Eclipse插件开发,当时就亲身感觉到Eclipse 插件体系的灵活与强大,而该体系与OSGi也可谓一脉 ...

  5. ASP.NET MVC 学习1、新增Controller,了解MVC运行机制

    1,turorial ,根据链接教程新建一个MVC项目 http://www.asp.net/mvc/tutorials/mvc-4/getting-started-with-aspnet-mvc4/ ...

  6. UVa 10305 (拓扑排序) Ordering Tasks

    题意: 经典的拓扑排序.有n个任务,然后某些任务必须安排在某些任务前面完成,输出一种满足要求的序列. 分析: 拓扑排序用离散里面的话来说就是将偏序关系拓展为全序关系.我们将“小于”这种关系看做一条有向 ...

  7. POJ 3253 Fence Repair【二叉堆】

    题意:给出n根木板,需要把它们连接起来,每一次连接的花费是他们的长度之和,问最少需要多少钱. 和上一题果子合并一样,只不过这一题用long long 学习的手写二叉堆的代码,再好好理解= = #inc ...

  8. mysql if 和 case when 用法 多个when情况用一个语句 存储过程

    在实际开发中,经常会用到 if 和 case when的用法,记录一下,以后可以用得到. DELIMITER $$ USE `数据库`$$ DROPPROCEDUREIFEXISTS `GetNoti ...

  9. 01day2

    小明搬家 模拟 [问题描述] 小明要搬家了,大家都来帮忙. 小明现在住在第N楼,总共K个人要把X个大箱子搬上N楼. 最开始X个箱子都在1楼,但是经过一段混乱的搬运已经乱掉了.最后大家发现这样混乱地搬运 ...

  10. 用C/C++开发基于VLC SDK的视频播放器

    在windows系统如果开发万能播放器,一般都是基本DirectShow来开发,开发也很简单,但缺点也很多,一个文件格式是否能够播放完全取决于你 是否安装了正确的解析器和解码器,即使现在有了万能解器安 ...