UVa 294 (因数的个数) Divisors
题意:
求区间[L, U]的正因数的个数。
分析:
有这样一条公式,将n分解为,则n的正因数的个数为
事先打好素数表,按照上面的公式统计出最大值即可。
#include <cstdio>
#include <cmath> const int maxn = ;
bool vis[maxn + ];
int prime[], cnt = ; void Init()
{
int m = sqrt(maxn + 0.5);
for(int i = ; i <= m; ++i) if(!vis[i])
for(int j = i * i; j <= maxn; j += i) vis[j] = true;
for(int i = ; i <= maxn; ++i) if(!vis[i]) prime[cnt++] = i;
} int factor_number(int n)
{
int m = sqrt(n + 0.5);
int ans = ;
for(int i = ; prime[i] <= m; ++i)
{
int k = ;
while(n % prime[i] == )
{
k++;
n /= prime[i];
}
ans *= k;
}
if(n > ) ans <<= ;
return ans;
} int main()
{
Init();
int a, b, T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &a, &b);
int ans, temp = ;
for(int i = a; i <= b; ++i)
{
int k = factor_number(i);
if(k > temp) { temp = k; ans = i; }
}
printf("Between %d and %d, %d has a maximum of %d divisors.\n", a, b, ans, temp);
} return ;
}
代码君
UVa 294 (因数的个数) Divisors的更多相关文章
- UVA 294 294 - Divisors (数论)
UVA 294 - Divisors 题目链接 题意:求一个区间内,因子最多的数字. 思路:因为区间保证最多1W个数字,因子能够遍历区间.然后利用事先筛出的素数求出质因子,之后因子个数为全部(质因子的 ...
- 阶乘 求n!中质因数的个数
在n!中末尾有几个0 取决于n!中5的个数(2肯定比5多) 所以遍历从1到n的数,看总共有几个5即可 ..N do j = i; == ) ++ret; j /= ; end end 有个nb的方法: ...
- 有关求任意一个正整数的n的因数的个数的求解思路
已知条件:n=p1^a1xp2^a2xp3^a3........xpk^ak;求解n的因数的个数: 求解的主要思想:递归 设所有的因数的个数为U1: 则U1会等于什么呢? 不妨设求得p2^a2xp3^ ...
- UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】
Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an int ...
- UVA 294 - Divisors 因子个数
Mathematicians love all sorts of odd properties of numbers. For instance, they consider 945 to be an ...
- UVa 294 - Divisors 解题报告 c语言实现 素数筛法
1.题目大意: 输入两个整数L.H其中($1≤L≤H≤10^9,H−L≤10000$),统计[L,H]区间上正约数最多的那个数P(如有多个,取最小值)以及P的正约数的个数D. 2.原理: 对于任意的一 ...
- 紫书 习题 10-9 UVa 294(正约数个数)
一个数的正约数个数等于这个数的质因数分解后 每一项幂+1的积 因为每个质因数的幂可以为0, 1, 2--(注意可以为0) 所以就每个质因数配一个幂任意组合就可得一个正因数,根据乘法原理可得正约数个数. ...
- UVA - 294 Divisors (约数)(数论)
题意:输入两个整数L,U(1<=L<=U<=109,U-L<=10000),统计区间[L,U]的整数中哪一个的正约数最多.如果有多个,输出最小值. 分析: 1.求一个数的约数, ...
- Uva 294 Divisors(唯一分解定理)
题意:求区间内正约数最大的数. 原理:唯一分解定义(又称算术基本定理),定义如下: 任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积 ,这里 均为质数,其诸指数 是正整数.这样的分解称 ...
随机推荐
- 前端构建工具gulp入门教程
本文假设你之前没有用过任何任务脚本(task runner)和命令行工具,一步步教你上手Gulp.不要怕,它其实很简单,我会分为五步向你介绍gulp并帮助你完成一些惊人的事情.那就直接开始吧. 第一步 ...
- select 函数实现 三种拓扑结构 n个客户端的异步通信 (完全图+线性链表+无环图)
一.这里只介绍简单的三个客户端异步通信(完全图拓扑结构) //建立管道 mkfifo open顺序: cl1 读 , cl2 cl3 向 cl1写 cl2 读 , cl1 cl3 向 cl2写 cl3 ...
- c# 模拟表单提交,post form 上传文件、大数据内容
表单提交协议规定:要先将 HTTP 要求的 Content-Type 设为 multipart/form-data,而且要设定一个 boundary 参数,这个参数是由应用程序自行产生,它会用来识别每 ...
- EXTJS 4.2 资料 控件lable定义
代码: { xtype:'label', id:'label', labelSeparator :'', // 去掉laebl中的冒号 fieldLabel : '这是个label' } 赋值: Ex ...
- dive into python 读笔(2)
chapter 4 自省, summary: # 用可选和命名参数定义和调用函数 # 用 str 强制转换任意值为字符串形式 # 用 getattr 动态得到函数和其它属性的引用 # 扩展列表解析语法 ...
- 苹果Mac操作系统下怎么显示隐藏文件
对于新手而已民,苹果的MAC操作系统刚用时用得很不习惯,比如想要显示被隐藏的文件时,不像windows有个“文件夹选项”对话框可以来设置,百度出来的结果都是用命令来操作,但我建议不要用命令去操作, ...
- Contest2037 - CSU Monthly 2013 Oct (problem A :Small change)
[题解]:二进制拆分 任意一个整数都可以拆分成 2^0 + 2^1 + 2^2 + 2^3 + ....+ m [code]: #include <iostream> #include & ...
- maven 编译部署src/main/java下的资源文件
maven 编译部署src/main/java下的资源文件 maven默认会把src/main/resources下的所有配置文件以及src/main/java下的所有java文件打包或发布到targ ...
- mybatis--面向接口编程
如果使用hiberante作为dao层,常用的方式是:定义一个dao层接口包(com.dao.service)然后在定义一个dao层接口实现包(com.dao.service.impl),这样定义结构 ...
- PAT-乙级-1013. 数素数 (20)
1013. 数素数 (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 令Pi表示第i个素数.现任给两个正整 ...