原书章节 原书章节题目 翻译文章序号 翻译文章题目 链接
4.1 Joining Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.html
4.1.1 Repartition join Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.html
4.1.2 Replicated joins Hadoop(2) MapReduce 连接:复制连接(Replication join) http://www.cnblogs.com/datacloud/p/3579333.html
4.1.3 Semi-joins Hadoop(3) MapReduce 连接:半连接(Semi-join) http://www.cnblogs.com/datacloud/p/3579975.html
4.1.4 Picking the best join strategy for your data Hadoop(4) MapReduce 连接:选择最佳连接策略 http://www.cnblogs.com/datacloud/p/3582113.html
4.2 Sorting Hadoop(5) MapReduce 排序:次排序(Secondary sort) http://www.cnblogs.com/datacloud/p/3584640.html
4.2.1 Secondary sort Hadoop(5) MapReduce 排序:次排序(Secondary sort) http://www.cnblogs.com/datacloud/p/3584640.html
4.2.2 Total order sorting Hadoop(6) MapReduce 排序:总排序(Total order sorting) http://www.cnblogs.com/datacloud/p/3586761.html
4.3 Sampling Hadoop(7) MapReduce:抽样(Sampling) http://www.cnblogs.com/datacloud/p/3588120.html
6.1 Measuring MapReduce and your environment Hadoop(8) MapReduce 性能调优:性能测量(Measuring) http://www.cnblogs.com/datacloud/p/3589875.html
6.2 Determining the cause of your performance woes Hadoop(9) MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 http://www.cnblogs.com/datacloud/p/3591981.html
6.2.1 Understanding what can impact MapReduce job performance Hadoop(9) MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 http://www.cnblogs.com/datacloud/p/3591981.html
6.2.2 Map woes Hadoop(9) MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 http://www.cnblogs.com/datacloud/p/3591981.html
6.2.3 Reducer woes Hadoop(10) MapReduce 性能调优:诊断reduce性能瓶颈 http://www.cnblogs.com/datacloud/p/3595682.html
6.2.4 General task woes Hadoop(11) MapReduce 性能调优:诊断一般性能瓶颈 http://www.cnblogs.com/datacloud/p/3596294.html
6.2.5 Hardware woes Hadoop(12) MapReduce 性能调优:诊断硬件性能瓶颈 http://www.cnblogs.com/datacloud/p/3597909.html
6.4.3 Optimizing the shuffle and sort phase Hadoop(13) MapReduce 性能调优:优化洗牌(shuffle)和排序阶段 http://www.cnblogs.com/datacloud/p/3599920.html
6.4.4 Skew mitigation Hadoop(14) MapReduce 性能调优:减小数据倾斜的性能损失 http://www.cnblogs.com/datacloud/p/3601624.html
6.4.5 Optimizing user space Java in MapReduce Hadoop(15) MapReduce 性能调优:优化MapReduce的用户JAVA代码 http://www.cnblogs.com/datacloud/p/3603191.html
6.4.6 Data serialization Hadoop(16) MapReduce 性能调优:优化数据序列化 http://www.cnblogs.com/datacloud/p/3608591.html
6.5 Chapter summary  Hadoop(16)  MapReduce 性能调优:优化数据序列化 http://www.cnblogs.com/datacloud/p/3608591.html
5.1 Working with small files Hadoop(17) MapReduce 文件处理:小文件 http://www.cnblogs.com/datacloud/p/3611459.html
5.2 Efficient storage with compression(tech 25, 26) Hadoop(19) MapReduce 文件处理:基于压缩的高效存储(一) http://www.cnblogs.com/datacloud/p/3612817.html
5.2 Efficient storage with compression(tech 27) Hadoop(19) MapReduce 文件处理:基于压缩的高效存储(一) http://www.cnblogs.com/datacloud/p/3616544.html
Appendix A.10 LZOP Hadoop(20) 附录A.10 压缩格式LZOP编译安装配置 http://www.cnblogs.com/datacloud/p/3617586.html
Appendix D.1 An optimized repartition join framework Hadoop(21) 附录D.1 优化后的重分区框架 http://www.cnblogs.com/datacloud/p/3617079.html
Appendix D.2 A replicated join framework Hadoop(22) 附录D.2 复制连接框架  http://www.cnblogs.com/datacloud/p/3617078.html

[大牛翻译系列]Hadoop 翻译文章索引的更多相关文章

  1. [大牛翻译系列]Hadoop(19)MapReduce 文件处理:基于压缩的高效存储(二)

    5.2 基于压缩的高效存储(续) (仅包括技术27) 技术27 在MapReduce,Hive和Pig中使用可分块的LZOP 如果一个文本文件即使经过压缩后仍然比HDFS的块的大小要大,就需要考虑选择 ...

  2. [大牛翻译系列]Hadoop(18)MapReduce 文件处理:基于压缩的高效存储(一)

    5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop ...

  3. [大牛翻译系列]Hadoop(20)附录A.10 压缩格式LZOP编译安装配置

    附录A.10 LZOP LZOP是一种压缩解码器,在MapReduce中可以支持可分块的压缩.第5章中有一节介绍了如何应用LZOP.在这一节中,将介绍如何编译LZOP,在集群做相应配置. A.10.1 ...

  4. [大牛翻译系列]Hadoop(9)MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈

    6.2 诊断性能瓶颈 有的时候作业的执行时间会长得惊人.想靠猜也是很难猜对问题在哪.这一章中将介绍如何界定问题,找到根源.涉及的工具中有的是Hadoop自带的,有的是本书提供的. 系统监控和Hadoo ...

  5. [大牛翻译系列]Hadoop系列性能部分完结

    Hadoop系列性能部分完结.其它的部分发布时间待定. Hadoop系列将不再一日一篇,开始不定期发布.

  6. [大牛翻译系列]Hadoop(6)MapReduce 排序:总排序(Total order sorting)

    4.2.2 总排序(Total order sorting) 有的时候需要将作业的的所有输出进行总排序,使各个输出之间的结果是有序的.有以下实例: 如果要得到某个网站中最受欢迎的网址(URL),就需要 ...

  7. [大牛翻译系列]Hadoop(5)MapReduce 排序:次排序(Secondary sort)

    4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业( ...

  8. [大牛翻译系列]Hadoop(22)附录D.2 复制连接框架

    附录D.2 复制连接框架 复制连接是map端连接,得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接的实现非常直接明了.更具体的内容可以参考Chunk Lam的<H ...

  9. [大牛翻译系列]Hadoop(21)附录D.1 优化后的重分区框架

    附录D.1 优化后的重分区框架 Hadoop社区连接包需要将每个键的所有值都读取到内存中.如何才能在reduce端的连接减少内存开销呢?本文提供的优化中,只需要缓存较小的数据集,然后在连接中遍历较大数 ...

随机推荐

  1. 1.4.2 solr字段类型--(1.4.2.7)字段属性使用案例

    1.4.2 solr字段类型 (1.4.2.1) 字段类型定义和字段类型属性. (1.4.2.2) solr附带的字段类型 (1.4.2.3) 使用货币和汇率 (1.4.2.4) 使用Dates(日期 ...

  2. 使用异步httpclient框架做get,post提交数据

    1.将异步httpclient框架导入 下载地址:http://download.csdn.net/detail/sinat_32804317/9555641 2.代码实现 public class ...

  3. iOS 程序启动原理

    很多工作一段时间的iOS程序员,总是每天沉浸在代码里,大家总是按照xcode的规定生成项目,然后就开始码代码了,但是大家知道app背后的启动过程吗?当点击程序图标启动程序开始到退出,程序在运行过程中到 ...

  4. Java Script基础(六) DOM模型

    一.文档对象模型 DOM( Document Object Model)文档对象模型,它提供了访问.动态修改文档的借口,W3C指定了DOM规范,主流浏览器都支持.DOM由3部分组成,分别是CoreDo ...

  5. 存储过程 <3> 和函数的区别

    二.函数和存储过程的优点: 1.共同使用的代码可以只需要被编写一次,而被需要该代码的任何应用程序调用(.net,c++,java,也可以使DLL库). 2.这种几种编写.几种维护更新.大家共享的方法, ...

  6. 解决ThinkPHP开启APP_DEBUG=>false时报错的问题

    最近用ThinkPHP开发一个项目,本地开发测试完成上传到服务器后,第一次打开正常,再刷新页面时就出现 “页面调试错误,无法找开页面,请重试”的错误,我就郁闷啦,明明本地设置define('APP_D ...

  7. javascript组件开发之基类继承实现

    上一篇文章大概的介绍了一下关于javascript组件的开发方式,这篇文章主要详细记一下基类的编写,这个基类主要是实现继承的功能 为什么要封装基类? 由于这次重构项目需要对各种组件进行封装,并且这些组 ...

  8. 转:云风skynet服务端框架研究

    转:  http://forthxu.com/blog/skynet.html skynet是云风编写的服务端底层管理框架,底层由C编写,配套lua作为脚本使用,可换python等其他脚本语言.sky ...

  9. 限额类费用报销单N+1原则

    --添加通过自定义档案列表编码及档案编码查询主键 select bd_defdoc.pk_defdoc as defdoc --查询限额类费用类型主键 from bd_defdoc, bd_defdo ...

  10. 【trim()】去掉字符串开头和结尾的空格,防止不必要的空格导致的错误。

    去掉字符串开头和结尾的空格,防止不必要的空格导致的错误. public static void main(String arg[]){ String a=" abc"; Strin ...