CSPS_104
又被爆踩。
正解写挂。
暴力不会。
只会改题。
还要加油。
T1
$nlog^2$是显然的
那么考虑只二分一次,就$nlog$了!
有什么能通过一次二分$O(1)$得到呢?
二分a的位置,$O(1)$得到b的位置
check的特判极其惨烈,%%%$Rock_B$调出来了
另一种简单一点的做法:
二分查找不好搞,考虑另一个二分——分治
通过分治,让每次的询问参数减半,也是$O(logn)$的复杂度
设计一个函数找到a的长度为lena,b的长度为lenb时,排名为rank的元素
那么把每次询问的rank分成一半,在a,b中找到对应的位置(长度不够则让另一个串多分一点)
如果$a[k/2]<b[k/2]$,则可知$a[1]~a[k/2]$都不可能成为排名为rank的元素
因为把ab放一起排序后$a[k/2]$后面的元素太多了..显然一定多于$lena+lenb-rank$
所以把$a[1]~a[k/2]$直接排除出答案,把rank-=k/2(或者当lena<k/2时的lena),递给下一层解决
T2
一个dp分成两部分
$dp[i]=min(dp[j-1]+value(j,i))$
单调栈维护所有可能贡献出value的j(单调递增栈)
对同一个j维护可能的最大$dp[k-1](k<=j)$,随便用什么数据结构维护栈里的最大值即可。
T3
暴力我打的是vector启发式归并,后来电脑关了,不知道有多少分。
正解?
高度烧脑警告。
我和miku啃了好久题解才弄明白
(miku教了我好久我才懂的差不多)
首先对于一个整型随机变量x有这样一个东西:
$E(x)=\sum\limits_{i=1}^{inf} P(x>=i)$
E(x)为x取值的期望,P为命题成立的概率。
证明么..
$$\begin{array}{rcl}\\E(x)&=&\sum\limits_{i=1}^{inf} i*P(x==i)\\&=&\sum\limits_{i=1}^{inf} i*(P(x>=i)-P(x>=i+1))\\&=&1*P(x>=1)-1*P(x>=2)+2*P(x>=2)-2*P(x>=3)+...\\&=&\sum\limits_{i=1}^{inf} P(x>=i)\end{array}$$
现在有了这样一个东西,先考虑每个询问的答案
$E_q=\sum\limits_{i=1}^{maxv} P(max_{j=l}^{r} val_j >=i)$
容易想到$i>maxv$的时候没有贡献。
那么求每个位置的最小值大于等于x的概率即可
这个概率就是小于x的数都不出现而大于等于x的数出现一个的概率
不是很好求,转化一下
求它的反面,也就是每个点的最小值都小于x,也就是大于等于x的都不出现
这个就好列式了,而且每个位置出现每个值的概率可以预处理,看起来可做了
$E_q=\sum\limits_{i=1}^{maxv} 1-\prod 1-P(v_j>=i)$
$v_j$是第j个位置的最小值
总结一下,答案就是:$ans=\sum\limits_{i=1}^{maxv} \sum\limits_{q=1}^{Q} 1- \prod 1-P(v_j>=i) (L[q]<=j<=R[q])$
可以想到,枚举i时,只有出现魔法石的i才会有$\prod 1-P()$的值的改变,其他情况下后面那坨柿子完全不变
所以只需要枚举有石头的i,没有石头的i没有变化可以放在一起统计
考虑维护后面那坨柿子。
首先那个1可以直接提出来,那么剩下的就是一个连乘的和
考虑每个石头,他的加入只会影响“某些询问”的连乘中的“某一项”
由于区间左右端点对应单调,他影响的区间也一定是连续的
所以可以用数据结构批量修改区间的连乘,具体做法为把他们的权值乘上一个$\frac{1-P_{now}}{1-P_{last}}$
推荐使用线段树区间修改。
大体的思路如上,细节比较多..
CSPS_104的更多相关文章
随机推荐
- CentOS8 yum/dnf 配置国内源
CentOS8 yum/dnf 配置国内源(临时) CentOS 8更改了软件包的安装程序,取消了 yum 的配置方法,改而使用了dnf 作为安装程序.虽然改变了软件包的安装方式,但是 dnf 还是能 ...
- 我的Spring Boot学习记录(二):Tomcat Server以及Spring MVC的上下文问题
Spring Boot版本: 2.0.0.RELEASE 这里需要引入依赖 spring-boot-starter-web 这里有可能有个人的误解,请抱着怀疑态度看. 建议: 感觉自己也会被绕晕,所以 ...
- hash长度扩展攻击
这里面就放一张百度百科的解释吧,emmm 反正我是看不懂还是做一下题来巩固一下吧 CTF中的hash长度攻击 进入网页你会发现页面显示  我这里没有看到什么可以利用的,抓了一下包也没有什么有可以利 ...
- 05-03 主成分分析(PCA)
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主 ...
- Spring Cloud 入门系列(一)
前言 Spring Could作为目前最流行基于Java开发的构建微服务的完整框架.发现目前相关系列教程太少,本文是基于官网教程做的一套翻译. 何为Spring Cloud? Spring Cloud ...
- java集合类之LinkedList详解
一.LinkedList简介 由于LinkedList是一个实现了Deque的双端队列,所以LinkedList既可以当做Queue,又可以当做Stack,在将LinkedList当做Stack时,使 ...
- redis数据库的使用
一.安装redis与可视化操作工具 可视化工具:RedisDesktopManager redis载地址:https://github.com/MSOpenTech/redis/releases. 二 ...
- Fiddler的基本使用
目录 清空历史请求 请求所消耗的时间 发送的数据在 设置fiddler过滤请求 模拟弱网环境 Ctrl+R 拦截数据,拦截数据又称"打断点" fiddler开启的时候就是默认开始抓 ...
- Web前端安全之利用Flash进行csrf攻击
整理于<XSS跨站脚本攻击剖析与防御>—第6章 Flash在客户端提供了两个控制属性: allowScriptAccess属性和allowNetworking属性,其中AllowScrip ...
- JavaScript回调函数和递归函数
一.回调函数--通过函数的指针来调用函数 把一个函数的指针作为另一个函数的参数,当调用这个参数的时候,这个函数就叫做回调函数 在链式运动上会用到回调函数,之后运动会见到 A.通过指针来调用函数 B.通 ...