CSPS_104
又被爆踩。
正解写挂。
暴力不会。
只会改题。
还要加油。
T1
$nlog^2$是显然的
那么考虑只二分一次,就$nlog$了!
有什么能通过一次二分$O(1)$得到呢?
二分a的位置,$O(1)$得到b的位置
check的特判极其惨烈,%%%$Rock_B$调出来了
另一种简单一点的做法:
二分查找不好搞,考虑另一个二分——分治
通过分治,让每次的询问参数减半,也是$O(logn)$的复杂度
设计一个函数找到a的长度为lena,b的长度为lenb时,排名为rank的元素
那么把每次询问的rank分成一半,在a,b中找到对应的位置(长度不够则让另一个串多分一点)
如果$a[k/2]<b[k/2]$,则可知$a[1]~a[k/2]$都不可能成为排名为rank的元素
因为把ab放一起排序后$a[k/2]$后面的元素太多了..显然一定多于$lena+lenb-rank$
所以把$a[1]~a[k/2]$直接排除出答案,把rank-=k/2(或者当lena<k/2时的lena),递给下一层解决
T2
一个dp分成两部分
$dp[i]=min(dp[j-1]+value(j,i))$
单调栈维护所有可能贡献出value的j(单调递增栈)
对同一个j维护可能的最大$dp[k-1](k<=j)$,随便用什么数据结构维护栈里的最大值即可。
T3
暴力我打的是vector启发式归并,后来电脑关了,不知道有多少分。
正解?
高度烧脑警告。
我和miku啃了好久题解才弄明白
(miku教了我好久我才懂的差不多)
首先对于一个整型随机变量x有这样一个东西:
$E(x)=\sum\limits_{i=1}^{inf} P(x>=i)$
E(x)为x取值的期望,P为命题成立的概率。
证明么..
$$\begin{array}{rcl}\\E(x)&=&\sum\limits_{i=1}^{inf} i*P(x==i)\\&=&\sum\limits_{i=1}^{inf} i*(P(x>=i)-P(x>=i+1))\\&=&1*P(x>=1)-1*P(x>=2)+2*P(x>=2)-2*P(x>=3)+...\\&=&\sum\limits_{i=1}^{inf} P(x>=i)\end{array}$$
现在有了这样一个东西,先考虑每个询问的答案
$E_q=\sum\limits_{i=1}^{maxv} P(max_{j=l}^{r} val_j >=i)$
容易想到$i>maxv$的时候没有贡献。
那么求每个位置的最小值大于等于x的概率即可
这个概率就是小于x的数都不出现而大于等于x的数出现一个的概率
不是很好求,转化一下
求它的反面,也就是每个点的最小值都小于x,也就是大于等于x的都不出现
这个就好列式了,而且每个位置出现每个值的概率可以预处理,看起来可做了
$E_q=\sum\limits_{i=1}^{maxv} 1-\prod 1-P(v_j>=i)$
$v_j$是第j个位置的最小值
总结一下,答案就是:$ans=\sum\limits_{i=1}^{maxv} \sum\limits_{q=1}^{Q} 1- \prod 1-P(v_j>=i) (L[q]<=j<=R[q])$
可以想到,枚举i时,只有出现魔法石的i才会有$\prod 1-P()$的值的改变,其他情况下后面那坨柿子完全不变
所以只需要枚举有石头的i,没有石头的i没有变化可以放在一起统计
考虑维护后面那坨柿子。
首先那个1可以直接提出来,那么剩下的就是一个连乘的和
考虑每个石头,他的加入只会影响“某些询问”的连乘中的“某一项”
由于区间左右端点对应单调,他影响的区间也一定是连续的
所以可以用数据结构批量修改区间的连乘,具体做法为把他们的权值乘上一个$\frac{1-P_{now}}{1-P_{last}}$
推荐使用线段树区间修改。
大体的思路如上,细节比较多..
CSPS_104的更多相关文章
随机推荐
- PHP 通过 ReflectionMethod 反射类方法获取注释返回 false 的问题解决
php 通过反射 ReflectionMethod 类来获取类方法的相关信息,其中就包含方法的注释内容. 问题描述 在公司测试环境运行以下代码,如果是 cli 命令行模式运行,正常输出代码注释.如果是 ...
- 【主动学习】Variational Adversarial Active Learning
本文记录了博主阅读ICCV2019一篇关于主动学习论文的笔记,第一篇博客,以后持续更新哈哈 论文题目:<Variational AdVersarial Active Learning> 原 ...
- 超大规模商用 K8s 场景下,阿里巴巴如何动态解决容器资源的按需分配问题?
作者 | 张晓宇(衷源) 阿里云容器平台技术专家 关注『阿里巴巴云原生』公众号,回复关键词"1010",可获取本文 PPT. 导读:资源利用率一直是很多平台管理和研发人员关心的话 ...
- Android系统介绍与框架
一.Andriod是什么? Android系统是Google开发的一款开源移动OS,Android中文名被国内用户俗称“安卓”.Android操作系统基于Linux内核设计,使用了Google公司自己 ...
- 安装、卸载 cocoapods
卸载cocoapods: localhost:~ je$ sudo gem uninstall cocoapods Remove executables: pod, sandbox-pod in ad ...
- DG常用运维命令及常见问题解决
DG常见运维命令及常见问题解决方法 l> DG库启动.关闭标准操作Dataguard关闭1).先取消日志应用alter database recover managed standby data ...
- eclipse中的项目运行时不出现run as→java application选项
eclipse中的运行java project时不出现run as→java application选项? 解决方案☞必须有正确的主方法,即public static void main(String ...
- CSS中的各种单位
单位 描述 ...
- 关于seaJs合并压缩(gulp-seajs-combine )路径与文件ID匹配问题。
前段时间和有大家介绍过用 gulp-seajs-combine 来打包seaJs文件.大家会发现合并seaJs一个很奇怪的现象,那就是它的 ID和路径匹配原则.使得有些文件已经合并过去了,但还是会提示 ...
- 基于mysql-8.0.16-winx64的主从搭建
1.主服务器的my.ini文件内容:[mysqld]# 主库和从库需要不一致server-id=1log-bin=mysql-bin# 同步的数据库binlog-do-db=master-slave# ...