Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?
前言
前篇文章 《从0到1学习Flink》—— Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢?这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去。
准备工作
我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 FLink 和 Kafka 。
运行启动 Flink、Zookepeer、Kafka,


好了,都启动了!
数据库建表
DROP TABLE IF EXISTS `student`;
CREATE TABLE `student` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`age` int(10) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
实体类
Student.java
package com.zhisheng.flink.model;
/**
* Desc:
* weixin: zhisheng_tian
* blog: http://www.54tianzhisheng.cn/
*/
public class Student {
public int id;
public String name;
public String password;
public int age;
public Student() {
}
public Student(int id, String name, String password, int age) {
this.id = id;
this.name = name;
this.password = password;
this.age = age;
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
", password='" + password + '\'' +
", age=" + age +
'}';
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getPassword() {
return password;
}
public void setPassword(String password) {
this.password = password;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
工具类
工具类往 kafka topic student 发送数据
import com.alibaba.fastjson.JSON;
import com.zhisheng.flink.model.Metric;
import com.zhisheng.flink.model.Student;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
/**
* 往kafka中写数据
* 可以使用这个main函数进行测试一下
* weixin: zhisheng_tian
* blog: http://www.54tianzhisheng.cn/
*/
public class KafkaUtils2 {
public static final String broker_list = "localhost:9092";
public static final String topic = "student"; //kafka topic 需要和 flink 程序用同一个 topic
public static void writeToKafka() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", broker_list);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer producer = new KafkaProducer<String, String>(props);
for (int i = 1; i <= 100; i++) {
Student student = new Student(i, "zhisheng" + i, "password" + i, 18 + i);
ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(student));
producer.send(record);
System.out.println("发送数据: " + JSON.toJSONString(student));
}
producer.flush();
}
public static void main(String[] args) throws InterruptedException {
writeToKafka();
}
}
SinkToMySQL
该类就是 Sink Function,继承了 RichSinkFunction ,然后重写了里面的方法。在 invoke 方法中将数据插入到 MySQL 中。
package com.zhisheng.flink.sink;
import com.zhisheng.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
/**
* Desc:
* weixin: zhisheng_tian
* blog: http://www.54tianzhisheng.cn/
*/
public class SinkToMySQL extends RichSinkFunction<Student> {
PreparedStatement ps;
private Connection connection;
/**
* open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接
*
* @param parameters
* @throws Exception
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = getConnection();
String sql = "insert into Student(id, name, password, age) values(?, ?, ?, ?);";
ps = this.connection.prepareStatement(sql);
}
@Override
public void close() throws Exception {
super.close();
//关闭连接和释放资源
if (connection != null) {
connection.close();
}
if (ps != null) {
ps.close();
}
}
/**
* 每条数据的插入都要调用一次 invoke() 方法
*
* @param value
* @param context
* @throws Exception
*/
@Override
public void invoke(Student value, Context context) throws Exception {
//组装数据,执行插入操作
ps.setInt(1, value.getId());
ps.setString(2, value.getName());
ps.setString(3, value.getPassword());
ps.setInt(4, value.getAge());
ps.executeUpdate();
}
private static Connection getConnection() {
Connection con = null;
try {
Class.forName("com.mysql.jdbc.Driver");
con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8", "root", "root123456");
} catch (Exception e) {
System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
}
return con;
}
}
Flink 程序
这里的 source 是从 kafka 读取数据的,然后 Flink 从 Kafka 读取到数据(JSON)后用阿里 fastjson 来解析成 student 对象,然后在 addSink 中使用我们创建的 SinkToMySQL,这样就可以把数据存储到 MySQL 了。
package com.zhisheng.flink;
import com.alibaba.fastjson.JSON;
import com.zhisheng.flink.model.Student;
import com.zhisheng.flink.sink.SinkToMySQL;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import java.util.Properties;
/**
* Desc:
* weixin: zhisheng_tian
* blog: http://www.54tianzhisheng.cn/
*/
public class Main3 {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "metric-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "latest");
SingleOutputStreamOperator<Student> student = env.addSource(new FlinkKafkaConsumer011<>(
"student", //这个 kafka topic 需要和上面的工具类的 topic 一致
new SimpleStringSchema(),
props)).setParallelism(1)
.map(string -> JSON.parseObject(string, Student.class)); //Fastjson 解析字符串成 student 对象
student.addSink(new SinkToMySQL()); //数据 sink 到 mysql
env.execute("Flink add sink");
}
}
结果
运行 Flink 程序,然后再运行 KafkaUtils2.java 工具类,这样就可以了。
如果数据插入成功了,那么我们查看下我们的数据库:

数据库中已经插入了 100 条我们从 Kafka 发送的数据了。证明我们的 SinkToMySQL 起作用了。是不是很简单?
项目结构
怕大家不知道我的项目结构,这里发个截图看下:

最后
本文主要利用一个 demo,告诉大家如何自定义 Sink Function,将从 Kafka 的数据 Sink 到 MySQL 中,如果你项目中有其他的数据来源,你也可以换成对应的 Source,也有可能你的 Sink 是到其他的地方或者其他不同的方式,那么依旧是这个套路:继承 RichSinkFunction 抽象类,重写 invoke 方法。
关注我
转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/10/31/flink-create-sink/
微信公众号:zhisheng
另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号(zhisheng)了,你可以回复关键字:Flink 即可无条件获取到。另外也可以加我微信 你可以加我的微信:yuanblog_tzs,探讨技术!

更多私密资料请加入知识星球!

Github 代码仓库
https://github.com/zhisheng17/flink-learning/
以后这个项目的所有代码都将放在这个仓库里,包含了自己学习 flink 的一些 demo 和博客
博客
1、Flink 从0到1学习 —— Apache Flink 介绍
2、Flink 从0到1学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门
3、Flink 从0到1学习 —— Flink 配置文件详解
4、Flink 从0到1学习 —— Data Source 介绍
5、Flink 从0到1学习 —— 如何自定义 Data Source ?
6、Flink 从0到1学习 —— Data Sink 介绍
7、Flink 从0到1学习 —— 如何自定义 Data Sink ?
8、Flink 从0到1学习 —— Flink Data transformation(转换)
9、Flink 从0到1学习 —— 介绍 Flink 中的 Stream Windows
10、Flink 从0到1学习 —— Flink 中的几种 Time 详解
11、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 ElasticSearch
12、Flink 从0到1学习 —— Flink 项目如何运行?
13、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Kafka
14、Flink 从0到1学习 —— Flink JobManager 高可用性配置
15、Flink 从0到1学习 —— Flink parallelism 和 Slot 介绍
16、Flink 从0到1学习 —— Flink 读取 Kafka 数据批量写入到 MySQL
17、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RabbitMQ
18、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HBase
19、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HDFS
20、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Redis
21、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Cassandra
22、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Flume
23、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 InfluxDB
24、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RocketMQ
25、Flink 从0到1学习 —— 你上传的 jar 包藏到哪里去了
26、Flink 从0到1学习 —— 你的 Flink job 日志跑到哪里去了
28、Flink 从0到1学习 —— Flink 中如何管理配置?
29、Flink 从0到1学习—— Flink 不可以连续 Split(分流)?
30、Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文
32、为什么说流处理即未来?
33、OPPO 数据中台之基石:基于 Flink SQL 构建实时数据仓库
36、Apache Flink 结合 Kafka 构建端到端的 Exactly-Once 处理
38、如何基于Flink+TensorFlow打造实时智能异常检测平台?只看这一篇就够了
40、Flink 全网最全资源(视频、博客、PPT、入门、实战、源码解析、问答等持续更新)
42、Flink 从0到1学习 —— 如何使用 Side Output 来分流?
源码解析
4、Flink 源码解析 —— standalone session 模式启动流程
5、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动
6、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动
7、Flink 源码解析 —— 分析 Batch WordCount 程序的执行过程
8、Flink 源码解析 —— 分析 Streaming WordCount 程序的执行过程
9、Flink 源码解析 —— 如何获取 JobGraph?
10、Flink 源码解析 —— 如何获取 StreamGraph?
11、Flink 源码解析 —— Flink JobManager 有什么作用?
12、Flink 源码解析 —— Flink TaskManager 有什么作用?
13、Flink 源码解析 —— JobManager 处理 SubmitJob 的过程
14、Flink 源码解析 —— TaskManager 处理 SubmitJob 的过程
15、Flink 源码解析 —— 深度解析 Flink Checkpoint 机制
16、Flink 源码解析 —— 深度解析 Flink 序列化机制
17、Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?
18、Flink Metrics 源码解析 —— Flink-metrics-core
19、Flink Metrics 源码解析 —— Flink-metrics-datadog
20、Flink Metrics 源码解析 —— Flink-metrics-dropwizard
21、Flink Metrics 源码解析 —— Flink-metrics-graphite
22、Flink Metrics 源码解析 —— Flink-metrics-influxdb
23、Flink Metrics 源码解析 —— Flink-metrics-jmx
24、Flink Metrics 源码解析 —— Flink-metrics-slf4j
25、Flink Metrics 源码解析 —— Flink-metrics-statsd
26、Flink Metrics 源码解析 —— Flink-metrics-prometheus


27、Flink 源码解析 —— 如何获取 ExecutionGraph ?
30、Flink Clients 源码解析
原文出处:zhisheng的博客,欢迎关注我的公众号:zhisheng
Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?的更多相关文章
- Flink 从 0 到 1 学习 —— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
- Flink 从0到1学习—— Flink 不可以连续 Split(分流)?
前言 今天上午被 Flink 的一个算子困惑了下,具体问题是什么呢? 我有这么个需求:有不同种类型的告警数据流(包含恢复数据),然后我要将这些数据流做一个拆分,拆分后的话,每种告警里面的数据又想将告警 ...
- Flink 从0到1学习 —— Flink 中如何管理配置?
前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...
- Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文
前言 之前也分享了不少自己的文章,但是对于 Flink 来说,还是有不少新入门的朋友,这里给大家分享点 Flink 相关的资料(国外数据 pdf 和流处理相关的 Paper),期望可以帮你更好的理解 ...
- Flink 从 0 到 1 学习 —— Flink 配置文件详解
前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...
- Flink 从 0 到 1 学习 —— Flink Data transformation(转换)
toc: true title: Flink 从 0 到 1 学习 -- Flink Data transformation(转换) date: 2018-11-04 tags: Flink 大数据 ...
- 《从0到1学习Flink》—— 如何自定义 Data Sink ?
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...
- 《从0到1学习Flink》—— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
- 《从0到1学习Flink》—— Flink 写入数据到 Kafka
前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用 ...
随机推荐
- git码云的使用基础(为了以后更好的协同操作)
git手册 安装教程 windows 不需要什么操作点点点就好 设置一个文件夹当成本地仓库 第一次上传 git init# 创建一个本地的仓库 git add. 当前文件夹下所有内容# 添加到暂存区 ...
- React SPA 应用 hash 路由如何使用锚点
当我们在做 SPA 应用的时候,为了兼容老的浏览器(如IE9)我们不得不放弃 HTML5 browser history api 而只能采用 hash 路由的这种形式来实现前端路由,但是因为 hash ...
- web项目jsp中无法引入js问题
https://blog.csdn.net/C1042135353/article/details/80274685#commentBox 这篇文章超赞的,几个小时的时间看了这篇文章豁然开朗,瞬间懂了 ...
- Element-UI 表单验证规则rules 配置参数说明
官方文档 : https://github.com/yiminghe/async-validator
- 缓冲区溢出实例(一)--Windows
一.基本概念 缓冲区溢出:当缓冲区边界限制不严格时,由于变量传入畸形数据或程序运行错误,导致缓冲区被填满从而覆盖了相邻内存区域的数据.可以修改内存数据,造成进程劫持,执行恶意代码,获取服务器控制权限等 ...
- 学完JavaScript基础有感
紧接上一篇回来了,这几天一直学js,会不自觉的和其他的编程语言联系在一起,在没有学jQuery之前,结合我所学的c,java,数据结构,数据库以及部分html感觉到JavaScript里面又很多相似的 ...
- 蓝桥杯c语言基础题
问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n ...
- CSS3的滤镜filter属性
css3的滤镜filter属性,可以对网页中的图片进行类似Photoshop图片处理的效果,例如背景的毛玻璃效果.老照片(黑白照片).火焰效果等. 一.blur(px)高斯模糊 二.brightnes ...
- MongoDB的一些高级语法.md
MongoDB的一些高级语法 AND 和 OR操作 AND操作 OR操作 嵌入式文档 插入 查询 数组(Array)字段 插入 查询 聚合(Aggregation) 筛选数据 修改字段 注意事项 ...
- Liunx学习总结(三)--用户和用户组管理
用户和组的基本概念 用户和组是操作系统中一种身份认证资源. 每个用户都有用户名.用户的唯一编号 uid(user id).所属组及其默认的 shell,可能还有密码.家目录.附属组.注释信息等. 每个 ...