题目描述

  我们把只包含因子2、3和5的数称作丑数( Ugly Number)。求按从小到大的顺序的第1500个丑数。例如,6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当作第一个丑数。

牛客网刷题地址

思路分析

  1. 直接求,判断每一个数是否为丑数,时间效率低下
  2. 创建数组存放已经排序好的丑数,这将消耗一定的内存开销。根据丑数的定义,丑数应该是另一个丑数的2、3或者5倍的结果,因此,我们从数组中已有的丑数里找到三个丑数T2、T3、T5,它们分别和2、3、5相乘得到的值恰好比已有的最大丑数大,三个乘积中最小的一个就是下一个丑数,存放入数组中,同时更新T2、T3、T5,使它们仍然保持与2、3、5的乘积恰好比已有的最大丑数大。

测试用例

  1. 功能测试:输入2、3、4、5、6等。
  2. 特殊输入测试:边界值1;无效输入0。
  3. 性能测试:输入较大的数字,如1500。

Java代码

public class Offer049 {
public static void main(String[] args) {
test1();
test2();
test3(); } public static int GetUglyNumber(int index) {
return Solution2(index);
} /**
* 挨个判断是否是丑数,直到找到index个丑数为止
* 时间效率低下
* @param index
* @return
*/
private static int Solution1(int index) {
if(index<=0) {
return 0;
}
int number = 0;
int uglyCount = 0;
while(uglyCount<index) {
++number;
if(isUglyNumber(number)) {
++uglyCount;
}
}
return number;
} private static int Solution2(int index) {
if(index<=0) {
return 0;
}
int[] uglyNumbers = new int[index];
uglyNumbers[0]=1;
int index2=0;
int index3=0;
int index5=0;
for(int i=1;i<index;i++) {
uglyNumbers[i] = getMin(uglyNumbers[index2]*2 ,uglyNumbers[index3]*3,uglyNumbers[index5]*5);
while(uglyNumbers[index2]*2<=uglyNumbers[i]) {
index2++;
}
while(uglyNumbers[index3]*3<=uglyNumbers[i]) {
index3++;
}
while(uglyNumbers[index5]*5<=uglyNumbers[i]) {
index5++;
}
} return uglyNumbers[index-1];
} private static int getMin(int i, int j, int k) {
int min = (i<j) ? i:j;
min = (min<k)? min:k;
return min;
} private static boolean isUglyNumber(int number) {
while(number%2==0) {
number/=2;
}
while(number%3==0) {
number/=3;
}
while(number%5==0) {
number/=5;
}
return number==1;
} private static void test1() {
System.out.println(GetUglyNumber(6));
System.out.println(GetUglyNumber(1500));
} private static void test2() {
System.out.println(GetUglyNumber(0));
}
private static void test3() { } }

代码链接

剑指Offer代码-Java

【Offer】[49] 【丑数】的更多相关文章

  1. 剑指 Offer 49. 丑数 + 小根堆 + 动态规划

    剑指 Offer 49. 丑数 Offer_49 题目详情 解法一:小根堆+哈希表/HashSet 根据丑数的定义,如果a是丑数,那么a2, a3以及a*5都是丑数 可以使用小根堆存储按照从小到大排序 ...

  2. 力扣 - 剑指 Offer 49. 丑数

    题目 剑指 Offer 49. 丑数 思路1 丑数是只包含 2.3.5 这三个质因子的数字,同时 1 也是丑数.要计算出 n 之前全部的丑数,就必须将 n 之前的每个丑数都乘以 2.3.5,选取出最小 ...

  3. 【Java】 剑指offer(49) 丑数

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 我们把只包含因子2.3和5的数称作丑数(Ugly Number). ...

  4. 每日一题 - 剑指 Offer 49. 丑数

    题目信息 时间: 2019-07-03 题目链接:Leetcode tag:动态规划 小根堆 难易程度:中等 题目描述: 我们把只包含质因子 2.3 和 5 的数称作丑数(Ugly Number).求 ...

  5. [剑指offer] 49. 丑数

    通俗易懂的解释: 首先从丑数的定义我们知道,一个丑数的因子只有2,3,5,那么丑数p = 2 ^ x * 3 ^ y * 5 ^ z,换句话说一个丑数一定由另一个丑数乘以2或者乘以3或者乘以5得到,那 ...

  6. 剑指 Offer 49. 丑数

    题目描述 我们把只包含质因子 2.3 和 5 的数称作丑数(Ugly Number).求按从小到大的顺序的第 n 个丑数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, ...

  7. 【剑指offer】面试题 49. 丑数

    面试题 49. 丑数 题目描述 题目:把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺 ...

  8. 【剑指Offer】丑数 解题报告

    [剑指Offer]丑数 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews 题目描述: ...

  9. 《剑指offer》面试题49. 丑数

    问题描述 我们把只包含因子 2.3 和 5 的数称作丑数(Ugly Number).求按从小到大的顺序的第 n 个丑数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, 5 ...

  10. 【剑指offer】丑数

    把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. leetcode上也 ...

随机推荐

  1. L1005矩阵取数游戏

    #include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i, a, b) for ( ...

  2. 手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示

    手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示 效果演示地址 项目demo展示 重要功能总结 权限功能的实现 权限路由思路: 根据用户登录的roles信息与路由中配置的roles信息进行比 ...

  3. 自定义markdown代码高亮显示-cnblog

    这个代码高亮..一点儿都不高亮...... cnblog里已经有闻道先者贴出代码了, https://www.cnblogs.com/liutongqing/p/7745413.html 效果大概是这 ...

  4. QT动画时间轴控制 QTimeLine

    QTimeLine类提供用于控制动画的时间轴 比如控制进度条的增长,图片,窗口的旋转,平移等等 QTimeLine有一个frameChanged(int)信号 当调用QTimeLine::start( ...

  5. 从零开始学习springboot之热部署的配置

    各位看官大家好,博主之前因为毕业设计以及毕业旅游耽搁了好长一段时间没有更新博客了,从今天起又会慢慢开始学习啦. 今天主要是来学习springboot热部署的配置. 一. 热部署 我们通常在修改某些文件 ...

  6. Spring Boot之Profile--快速搞定多环境使用与切换

    Spring Profile是Spring3引入的概念,主要用在项目多环境运行的情况下,通过激活方式实现多环境切换,省去多环境切换时配置参数和文件的修改,并且Spring profile提供了多种激活 ...

  7. pickle 基础用法

    def save_obj_to_file(path, target_obj): file = open(path,'wb') pickle.dump(target_obj) file.close() ...

  8. 如何彻底禁用 werfalut.exe

    在程序中调用 控制台程序 的时候,一旦出现控制台出现 crash 往往会弹出 werfault 窗口, 这样往往会锁死线程,导致程序无法继续运行. 那如何禁止 werfault 窗口的弹出呢? 在 s ...

  9. 纯前端下载pdf链接文件,而不是打开预览的解决方案

    纯前端下载pdf链接文件,而不是打开预览的解决方案 一,介绍与需求 1.1,介绍 XMLHttpRequest 用于在后台与服务器交换数据.这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行 ...

  10. 漏洞挖掘技巧之利用javascript:

    好久没更新博客了,更新一波. 场景: window.location.href=”” location=”” location.href=”” window.location.* 常见地点:任何二次跳 ...