[LOJ 6435][PKUSC 2018]星际穿越
[LOJ 6435][PKUSC 2018]星际穿越
题意
给定 \(n\) 个点, 每个点与 \([l_i,i-1]\) 之间的点建立有单位距离的双向边. \(q\) 组询问从 \(x\) 走到 \([l,r]\) 中的随机一点的期望距离. 输出既约分数.
\(n,q\le 3\times 10^5\), \(l<r<x\).
题解
显然对于一个 \(k\), \(k\) 步之内能到达的点是 \([1,x)\) 的一个后缀. 那么也就是说 \([1,x)\) 中的点的答案被分成了若干段, 每段的答案相同且向前递增.
手动模拟一下, 我们发现第一步可以走到的左端点是 \(l_x\), 第二步可以走到的就是 \(\min\limits_{k\ge l_x}l_k\) 了. 原因是所有可能一步到达 \(\min\limits_{k\ge l_x}l_k\) 的点都必然可以被 \(x\) 一步到达(如果 \(l_k\) 在 \(k>x\) 处取得最小值, 那么显然 \(l_k<x\). 又由于 \(k\) 连接的是 \([l_k,k)\), 那么必然和 \(x\) 直接相连). 且后面的步骤都是形如 \(l_k\) 的后缀 \(\min\) 的形式.
于是我们可以在第二步及以后尝试倍增.
倍增的同时不仅记录到达的左端点, 同时记录一下倍增时跳过的点的距离总和. 这样就可以在 \(O(\log n)\) 的时间内计算出 \(x\) 到 \([l,x)\) 内的所有点的最短路之和了. 两个后缀和相减即可得到 \([l,r]\) 内的答案.
最后约分一下输出就完了. 虽然最终答案是 \(O(n^2)\) 级别的但是数据比较弱并没有爆 int...
参考代码
#include <bits/stdc++.h>
const int MAXN=3e5+10;
int n;
int q;
int l[MAXN];
int lg[MAXN];
int sum[20][MAXN];
int prev[20][MAXN];
int* minl=prev[0];
int ReadInt();
int Calc(int,int);
int main(){
n=ReadInt();
for(int i=2;i<=n;i++)
l[i]=ReadInt();
q=ReadInt();
l[1]=1;
minl[n+1]=n;
for(int i=n;i>=1;i--){
minl[i]=std::min(l[i],minl[i+1]);
sum[0][i]=i-minl[i];
}
for(int i=1;i<=n;i++)
sum[0][i]=i-minl[i];
for(int i=1;(1<<i)<=n;i++){
lg[1<<i]=1;
for(int j=1;j<=n;j++){
prev[i][j]=prev[i-1][prev[i-1][j]];
sum[i][j]=sum[i-1][j]+sum[i-1][prev[i-1][j]]+((prev[i-1][j]-prev[i][j])<<(i-1));
}
}
for(int i=1;i<=n;i++)
lg[i]+=lg[i-1];
for(int i=0;i<q;i++){
int l=ReadInt(),r=ReadInt(),pos=ReadInt();
int a=Calc(pos,l)-Calc(pos,r+1);
int b=r-l+1;
int gcd=std::__gcd(a,b);
printf("%d/%d\n",a/gcd,b/gcd);
}
return 0;
}
int Calc(int pos,int lim){
if(l[pos]<lim)
return pos-lim;
int dis=0,p=l[pos],ans=pos-lim;
// printf("x %d %d\n",ans,p);
for(int i=lg[p];i>=0;i--){
if(lim<=prev[i][p]){
ans+=sum[i][p]+(p-prev[i][p])*dis;
// printf("$ %d Q(%d,%d) %d\n",i,pos,lim,ans);
p=prev[i][p];
dis|=(1<<i);
}
}
return ans+(p-lim)*(dis+1);
}
inline int ReadInt(){
int x=0;
register char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch)){
x=x*10+ch-'0';
ch=getchar();
}
return x;
}

[LOJ 6435][PKUSC 2018]星际穿越的更多相关文章
- [LOJ 6433][PKUSC 2018]最大前缀和
[LOJ 6433][PKUSC 2018]最大前缀和 题意 给定一个长度为 \(n\) 的序列, 求把这个序列随机打乱后的最大前缀和的期望乘以 \(n!\) 后对 \(998244353\) 取膜后 ...
- [LOJ 6432][PKUSC 2018]真实排名
[LOJ 6432][PKUSC 2018]真实排名 题意 给定 \(n\) 个选手的成绩, 选中其中 \(k\) 个使他们的成绩翻倍. 对于每个选手回答有多少种方案使得他的排名不发生变化. \(n\ ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- PKUSC 2018 题解
PKUSC 2018 题解 Day 1 T1 真实排名 Link Solution 考虑对于每一个人单独算 每一个人有两种情况,翻倍和不翻倍,他的名次不变等价于大于等于他的人数不变 设当前考虑的人的成 ...
- 「PKUSC2018」星际穿越 (70分做法)
5371: [Pkusc2018]星际穿越 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 27 Solved: 11[Submit][Status] ...
- [PKUSC2018]星际穿越
[PKUSC2018]星际穿越 题目大意: 有一排编号为\(1\sim n\)的\(n(n\le3\times10^5)\)个点,第\(i(i\ge 2)\)个点与\([l_i,i-1]\)之间所有点 ...
- BZOJ5371[Pkusc2018]星际穿越——可持久化线段树+DP
题目描述 有n个星球,它们的编号是1到n,它们坐落在同一个星系内,这个星系可以抽象为一条数轴,每个星球都是数轴上的一个点, 特别地,编号为i的星球的坐标是i. 一开始,由于科技上的原因,这n个星球的居 ...
- (纪录片)《星际穿越》中的科学 The Science of Interstellar
简介: 导演: Gail Willumsen编剧: Gail Willumsen主演: 克里斯托弗·诺兰 / 乔纳森·诺兰 / 基普·索恩 / 马修·麦康纳类型: 纪录片 / 短片制片国家/地区: 美 ...
随机推荐
- subprocess模块(了解)
目录 一.subprocess模块 一.subprocess模块 subprocess模块允许你去创建一个新的进程让其执行另外的程序,并与它进行通信,获取标准的输入.标准输出.标准错误以及返回码等.更 ...
- golang--redis基本介绍
redis(remote-dictionary-system)即远程字典服务器,是NoSQL数据库: 适合做缓存以及持久化: 免费开源,高性能的分布式内存数据库: redis的安装和使用: 下载Red ...
- 融云技术分享:解密融云IM产品的聊天消息ID生成策略
本文来自融云技术团队原创分享,原文发布于“融云全球互联网通信云”公众号,原题<如何实现分布式场景下唯一 ID 生成?>,即时通讯网收录时有部分改动. 1.引言 对于IM应用来说,消息ID( ...
- IT兄弟连 Java语法教程 数组 什么是数组
数组是编程语言中最常见的一种数据结构,可用于存储多个数据,每个数组元素存放一个数据,通常可通过数组元素的索引来访问数组元素,包括为数组元素赋值和取出数组元素的值.Java语言的数组则具有其特有的特征, ...
- IT兄弟连 Java语法教程 三目运算符
Java提供了一个特殊的三目(三个分支)运算符,它可以替代特定类型的if-then-else语句结构.这个运算符是“?”乍一看可能有一些困惑,但一旦理解“?”运算符,就可以高效地使用它.“?”运算符的 ...
- 详解JAVA8函数式接口{全}
1: 函数式接口 1.1 概念 1.2 格式 1.3@FunctionalInterface注解 1.4 调用自定义函数接口 2:函数式编程 2.1:lambda的延迟执行 2.2 使用Lambda作 ...
- 【前端知识体系-JS相关】你真的了解JavaScript编译解析的流程吗?
1. JS编译解析的流程 1.1 JS运行分三步 语法分析(通篇扫描是否有语法错误),预编译(发生在函数执行的前一刻),解释执行(一行行执行). 1.2 预编译执行分五步 创建AO对象(Activat ...
- 关于matlab2014a中生成dll文件,打包成com组件出现的问题和解决方法
问题1:matlab2014a破解不完整,容易导致package打包失败 解决方法:1.下载破解文档:链接: http://pan.baidu.com/s/1eRJ4E2I 密码: 44th 2.下载 ...
- go-百度贴吧-纵向爬取
百度贴吧纵向爬取 上一个是横向爬取的,这个纵向爬取,具体怎么做的看代码 package main import ( "fmt" "io" "net/h ...
- Web前端基础(7):JavaScript(一)
1. JavaScript概述 1.1 JavaScript历史背景介绍 布兰登 • 艾奇(Brendan Eich,1961年-),1995年在网景公司,发明的JavaScript. 一开始Java ...