R语言实战 第7章
# 01 描述性统计分析 --------------------------------------------------------------
#针对总体的
mycavs = mtcars[,c(1,4,6)]
names(mtcars)
#"mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
#关注的焦点没加仑汽车行驶的mpg 英里数 hp 马力 wt车重
summary(mycavs)
library(psych)
describe(mycavs)
detach(psych)
#针对分组的
aggregate(mycavs,by=list(mtcars$am),mean)
#可以调用的函数只有平均数、标准差这样的单返回值函数
describeBy(mycavs,list(mtcars$am))
##多个分组的话就是 list(name1=groupvar1,name2=groupvar2....)
#分类跟分类的频数表
#一维
library(vcd)
names(Arthritis)
sapply(head(Arthritis),class)
##"ID" "Treatment" "Sex" "Age" "Improved"
#一项风湿性关节炎新疗法的双盲临床实验
mytable = table(Arthritis$Improved)
mytable
#None Some Marked
#42 14 28
prop.table(mytable) ##转换成比例
prop.table(mytable)*100 ##转换成百分比
#二维
table(Arthritis$Improved,Arthritis$Treatment)
xtabs(~Treatment+Improved,data =Arthritis ) ->mytable
# Improved
#Treatment None Some Marked
#Placebo 29 7 7
#Treated 13 7 21
prop.table(mytable,1) ##转换成行比例
prop.table(mytable,2) ##转换成列比例
##多维度
table(Arthritis$Improved,Arthritis$Treatment,Arthritis$Sex)
xtabs(~Treatment+Improved+Sex,data =Arthritis ) ->mytable
ftable(mytable)
##ftable,让三维分组更加紧凑
ftable(prop.table(mytable,c(1,2)))
# 02 独立性检验 ----------------------------------------------------------------
#H0数据独立 数据之间没什么关系
mytabls = xtabs(~Treatment+Improved,data =Arthritis )
chisq.test(mytabls)
#p-value = 0.001463 数据之间不独立,存在关系
mytabls = xtabs(~Sex+Improved,data =Arthritis )
chisq.test(mytabls)
#p-value = 0.08889 数据之间独立,不存在什么关系
fisher.test(mytabls)
##fisher.test Fisher精确检验,比chisq.test更加严谨一点
xtabs(~Treatment+Improved+Sex,data =Arthritis ) ->mytable
mantelhaen.test(mytable)
##H0 两个名义变量在第三个变量中的每一层都是条件独立
# p-value = 0.0006647 结果表明患者接受的治疗得到的改善在性别的每一水平并不独立
# 03 相关性的度量 ---------------------------------------------------------------
#二维列联表的相关
mytabls = xtabs(~Treatment+Improved,data =Arthritis )
assocstats(mytabls)
colnames(state.x77)
#[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"
[7] "Frost" "Area"
state = state.x77[,1:6]
cov(state)
##协方差
cor(state)
#采用皮尔逊的相关系数
##function (x, y = NULL, use = "everything", method = c("pearson",
"kendall", "spearman"))
#偏相关
library(ggm)
colnames(state)
#[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"
pcor(c(1,5,2,3,6),state)
# 04 相关显著性的检验 -------------------------------------------------------------
cor.test(state[,3],state[,5])
#H0 不相关
cor.test(state[,1],state[,6])
#cor.test只能是一个一个的对其进行显著性检验
##corr.test 一个进行矩阵的相关
library(psych)
corr.test(state)
##人口跟高中毕业是相关系数是-0.1 ,但是不能拒绝显著性为0
pcor(c(,,,,),state)->r
c(,,,,)->q
pcor.test(r,q,state)
# 05 t检验 ------------------------------------------------------------------
##服从正态分布的 独立两组、不独立两组、多组
##不服从正态分的 两组 多组的 均值比较
## HO 都是均值相等 独立
install.packages("MASS")
R语言实战 第7章的更多相关文章
- R入门<三>-R语言实战第4章基本数据管理摘要
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好 ...
- R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 =============================================================== ...
- R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx ...
- R语言实战(一)介绍、数据集与图形初阶
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章 R语言介绍 获取帮助函数 help(), ? 查看函数帮助 exampl ...
- R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来 ...
- R语言实战(五)方差分析与功效分析
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...
- 《数据挖掘:R语言实战》
<数据挖掘:R语言实战> 基本信息 作者: 黄文 王正林 丛书名: 大数据时代的R语言 出版社:电子工业出版社 ISBN:9787121231223 上架时间:2014-6-6 出版 ...
- R语言实战(十)处理缺失数据的高级方法
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据 ...
- R语言实战(九)主成分和因子分析
本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是 ...
随机推荐
- MySQL InnoDB 存储引擎原理浅析
注:本文主要基于MySQL 5.6以后版本编写,多数知识来着书籍<MySQL技术内幕++InnoDB存储引擎>,本文章仅记录个人认为比较重要的部分,有兴趣的可以花点时间读原书. 一.MyS ...
- 【CSS】318- CSS实现宽高等比自适应容器
点击上方"前端自习课"关注,学习起来~ 在最近开发移动端页面,遇到这么一个情况:当页面宽度 100% 时,高度为宽度一半,并随手机宽度变化依然是一半. 于是我们就需要实现一个宽度自 ...
- Orleans 初接触(一) 入门例子
[返回导航] 在简单了解了Orleans 之后我们可以通过几个例子去加深印象 一.Orleans入门例子 这个例子是跟着<Orleans入门例子>(https://www.cnblogs. ...
- Vue中使用iconfont
学习博客:https://www.imooc.com/article/33597?block_id=tuijian_wz
- NIO-SocketChannel源码分析
目录 NIO-SocketChannel源码分析 目录 前言 ServerSocketChannelImpl 创建ServerSocketChannel 绑定和监听 接收 SocketChannelI ...
- ChinaSys 一些心得
这周不要脸的和老板一起去了 ChinaSys,可以说整个中国搞系统最nb的一批人的学术交流了.一圈报告听下来, 有几点心得,不多,可能也没有那么深刻. 系统领域的开源框架并不多 搞系统和搞AI,搞算法 ...
- UWP 打开系统设置面板
由于UWP各种权限管理的比较严格,所以在执行某一个特殊的操作之前,最好先申请一下相应的权限,以便告知用户你使用了这个权限,而且可以有效的避免App崩溃. 比如你想让用户手动打开麦克风权限,那么可以执行 ...
- ObjectPool 对象池设计模式
Micosoft.Extension.ObjectPool 源码架构.模式分析: 三大基本对象: ObjectPool抽象类 ObjectPoolProvider抽象类 IPooledObjectPo ...
- Dubbo环境搭建-ZooKeeper注册中心
场景 Dubbo简介与基本概念: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/103555224 注: 博客: https:// ...
- 原生JS实现移动端轮播图
功能描述: 自动无缝轮播图片,底部小圆点跟图片保持一致:手指左右移动轮播图,移动距离大于50px播放下一张(或上一张),小于50px则回弹 具体功能实现: 1.定时器 自动轮播图片 先声明一个inde ...