# 01 描述性统计分析 --------------------------------------------------------------
#针对总体的
mycavs = mtcars[,c(1,4,6)]
names(mtcars)
#"mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
#关注的焦点没加仑汽车行驶的mpg 英里数 hp 马力 wt车重
summary(mycavs)

library(psych)
describe(mycavs)
detach(psych)
#针对分组的
aggregate(mycavs,by=list(mtcars$am),mean)
#可以调用的函数只有平均数、标准差这样的单返回值函数

describeBy(mycavs,list(mtcars$am))
##多个分组的话就是 list(name1=groupvar1,name2=groupvar2....)

#分类跟分类的频数表
#一维
library(vcd)
names(Arthritis)
sapply(head(Arthritis),class)
##"ID" "Treatment" "Sex" "Age" "Improved"
#一项风湿性关节炎新疗法的双盲临床实验

mytable = table(Arthritis$Improved)
mytable
#None Some Marked
#42 14 28

prop.table(mytable) ##转换成比例
prop.table(mytable)*100 ##转换成百分比
#二维
table(Arthritis$Improved,Arthritis$Treatment)
xtabs(~Treatment+Improved,data =Arthritis ) ->mytable
# Improved
#Treatment None Some Marked
#Placebo 29 7 7
#Treated 13 7 21
prop.table(mytable,1) ##转换成行比例
prop.table(mytable,2) ##转换成列比例

##多维度
table(Arthritis$Improved,Arthritis$Treatment,Arthritis$Sex)
xtabs(~Treatment+Improved+Sex,data =Arthritis ) ->mytable
ftable(mytable)
##ftable,让三维分组更加紧凑
ftable(prop.table(mytable,c(1,2)))

# 02 独立性检验 ----------------------------------------------------------------
#H0数据独立 数据之间没什么关系
mytabls = xtabs(~Treatment+Improved,data =Arthritis )
chisq.test(mytabls)
#p-value = 0.001463 数据之间不独立,存在关系

mytabls = xtabs(~Sex+Improved,data =Arthritis )
chisq.test(mytabls)
#p-value = 0.08889 数据之间独立,不存在什么关系

fisher.test(mytabls)
##fisher.test Fisher精确检验,比chisq.test更加严谨一点

xtabs(~Treatment+Improved+Sex,data =Arthritis ) ->mytable
mantelhaen.test(mytable)
##H0 两个名义变量在第三个变量中的每一层都是条件独立
# p-value = 0.0006647 结果表明患者接受的治疗得到的改善在性别的每一水平并不独立

# 03 相关性的度量 ---------------------------------------------------------------
#二维列联表的相关

mytabls = xtabs(~Treatment+Improved,data =Arthritis )
assocstats(mytabls)

colnames(state.x77)
#[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"
[7] "Frost" "Area"

state = state.x77[,1:6]

cov(state)
##协方差

cor(state)
#采用皮尔逊的相关系数
##function (x, y = NULL, use = "everything", method = c("pearson",
"kendall", "spearman"))

#偏相关
library(ggm)
colnames(state)
#[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"
pcor(c(1,5,2,3,6),state)

# 04 相关显著性的检验 -------------------------------------------------------------

cor.test(state[,3],state[,5])
#H0 不相关

cor.test(state[,1],state[,6])

#cor.test只能是一个一个的对其进行显著性检验

##corr.test 一个进行矩阵的相关
library(psych)
corr.test(state)
##人口跟高中毕业是相关系数是-0.1 ,但是不能拒绝显著性为0

pcor(c(,,,,),state)->r
c(,,,,)->q
pcor.test(r,q,state)

# 05 t检验 ------------------------------------------------------------------
##服从正态分布的 独立两组、不独立两组、多组
##不服从正态分的 两组 多组的 均值比较
## HO 都是均值相等 独立
install.packages("MASS")

R语言实战 第7章的更多相关文章

  1. R入门<三>-R语言实战第4章基本数据管理摘要

    入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好 ...

  2. R语言实战(三)基本图形与基本统计分析

    本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 =============================================================== ...

  3. R语言实战(二)数据管理

    本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx ...

  4. R语言实战(一)介绍、数据集与图形初阶

    本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章       R语言介绍 获取帮助函数 help(), ? 查看函数帮助 exampl ...

  5. R语言实战(四)回归

    本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来 ...

  6. R语言实战(五)方差分析与功效分析

    本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...

  7. 《数据挖掘:R语言实战》

    <数据挖掘:R语言实战> 基本信息 作者: 黄文    王正林 丛书名: 大数据时代的R语言 出版社:电子工业出版社 ISBN:9787121231223 上架时间:2014-6-6 出版 ...

  8. R语言实战(十)处理缺失数据的高级方法

    本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据 ...

  9. R语言实战(九)主成分和因子分析

    本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是 ...

随机推荐

  1. jumpserver跳板机搭建,适合centos6和centos7的使用

    第17章 jumpserver的搭建   17.1 jumpserver的介绍 jumpserver是全球首款开源的堡垒机,使用的是GNU,GPL的开源协议. jumpserver是用python和g ...

  2. 基于iCamera测试高清摄像头OV7725小结

    基于iCamera测试高清摄像头OV7725小结 先看看硬件特点 然后看看硬件测试,usb采集出图 默认是不带晶振的,可以通过usb提供提供12M.24M.48M时钟 软件出图 可以通过修改0x11, ...

  3. vbs 脚本 获取机器名/IP/MAC

    strComputer = "."strMesseage="" Set objWMIService = GetObject("winmgmts:{im ...

  4. Django 07

    目录 ORM查询优化 only与defer(单表) select_related与prefetch_related(跨表) choices参数 MTV与MVC模型 Ajax简介 前后端传输数据编码格式 ...

  5. Python3 并发编程2

    目录 进程互斥锁 基本概念 互斥锁的使用 IPC 基本概念 队列 生产者消费者模型 基本概念 代码实现 线程 基本概念 创建线程 线程互斥锁 进程互斥锁 基本概念 临界资源: 一次仅允许一个进程使用的 ...

  6. python多线程编程-queue模块和生产者-消费者问题

    摘录python核心编程 本例中演示生产者-消费者模型:商品或服务的生产者生产商品,然后将其放到类似队列的数据结构中.生产商品中的时间是不确定的,同样消费者消费商品的时间也是不确定的. 使用queue ...

  7. 爬虫(六):XPath、lxml模块

    1. XPath 1.1 什么是XPath XPath(XML Path Language) 是一门在XML和HTML文档中查找信息的语言,可用来在XML和HTML文档中对元素和属性进行遍历. 1.2 ...

  8. Android 数据库 SQLiteOpenHelper

    public class DbOpenHelper extends SQLiteOpenHelper { private static String name = "test.db" ...

  9. Linux 版本控制工具之rabbitvcs

    原文地址:http://www.robotshell.com/2017/11/04/Linux-%E7%89%88%E6%9C%AC%E6%8E%A7%E5%88%B6%E5%B7%A5%E5%85% ...

  10. 代码管理平台之git

    yum install -y gitmkdir -p /date/gitrootcd !$git init git add 1.txtgit commit -m "add 1.txt&quo ...