Pytorch数据集读入——Dataset类,实现数据集打乱Shuffle
在进行相关平台的练习过程中,由于要自己导入数据集,而导入方法在市面上五花八门,各种库都可以应用,在这个过程中我准备尝试torchvision的库dataset
torchvision.datasets.ImageFolder
简单应用起来非常简单,用torchvision.datasets.ImageFolder实现图片的导入,在随后训练过程中用Datalodar处理后可按批次取出训练集
class ImageFolder(root, transform=None, target_transform=None, loader=default_loader, is_valid_file=None)
ImageFolder有这么几个参数,其中root指的是数据所在的文件夹,其中该文件夹的存储方式应为
root/labels/xxx.jpg
即根据自身分类标签存储在对应标签名的文件夹内
ImageFolder在读入的过程中会自行加好标签,最后形成一对对的数据
另外比较常用的就是transform,表示对于传入图片的预处理,如剪裁,颜色选择等等
比如
transform_t = transforms.Compose([
transforms.Resize([64, 64]),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()]
)
具体参数可以上网查看
在之后用DataLodar处理后虽然的确有Shuffle的参数,但是却只是在一个小批次内进行打乱,原本是按照类别存储的,这样的话会导致很严重的过拟合,为了避免这个,我决定常识改写一下Dataset的类(主要是看起来Dataset看起来改写比较顺手...ImageFolder还没有看源码并没要对此下手)
但是Dataset需要读入一个个的训练数据的位置,怎么办呢?我就先写了一个小脚本,生成一个txt文件来存储所有数据的名称(相对路径),同时在这一步就进行打乱操作【一眼看下去甚至会发现init的classnum参数完全没用上(捂脸
import os
import numpy as np
'''
self.target 顺序存储数据集
self.DataFile 存储根目录
self.s 存储所有数据
self.label 存储所有标签及其对应的值
'''
class create_list():
def __init__(self,root,classnum=2):
self.target=open("./Data.txt",'w')
self.DataFile=root
self.s=[]
self.label={}
self.datanum=0
def create(self):
files=os.listdir(self.DataFile)
for labels in files:
tempdata=os.listdir(self.DataFile+"/"+labels)
self.label[labels]=len(self.label)
for img in tempdata:
self.datanum+=1
self.target.write(self.DataFile+"/"+labels+"/"+img+" "+labels+"\n")
self.s.append([self.DataFile+"/"+labels+"/"+img,labels])
def detail(self):
#查看数据数量以及标签对应
print(self.datanum)
print(self.label)
def get_all(self):
#查看所有数据
print(self.s)
def get_root(self):
#获得根目录
return self.DataFile
def shuffle(self):
#获得打乱的存储txt
shuffle_file=open("./Shuffle_Data.txt",'w')
temp=self.s
np.random.shuffle(temp)
for i in temp:
shuffle_file.write(i[0]+" "+str(i[1])+"\n")
return self.DataFile+"/Shuffle_Data.txt"
def label_id(self,label):
#获得该标签对应的值
return self.label[label]
数据集的存储方式上的要求跟之前的ImageFolder一样
最终会生成一个这样的txt文件

数据集来源于某x光胸片判断...
而Shuffle操作就是为了生成打乱后的txt文件,我写的比较简单粗暴...先将就看吧,生成后大概就是这个样子

至少真正的做到打乱数据了
完成这个以后,就可以用此来帮助DataLodar了
接下来的代码或许比较辣眼睛...但是事实证明是有用的,但是可能Python技巧不太熟练所以就会显得很生涩...
我重现的Dataset类:
from PIL import Image
import torch
class cDataset(torch.utils.data.Dataset):
def __init__(self, datatxt, root="", transform=None, target_transform=None, LabelDic=None):
super(cDataset,self).__init__()
files = open(root + "/" + datatxt, 'r')
self.img=[]
for i in files:
i = i.rstrip()
temp = i.split()
if LabelDic!=None:
self.img.append((temp[0],LabelDic[temp[1]]))
else:
self.img.append((temp[0],temp[0]))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
files, label = self.img[index]
img = Image.open(files).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img,label
def __len__(self):
return len(self.img)
其实直接看就能大概看明白,主要也就是要实现类里面的几个方法
class cDataset(torch.utils.data.Dataset):
def __init__():
def __getitem__(self, index):
def __len__(self):
其中getitm类似一次次的取出数据,len就是返回数据集数目
其中init的参数我做了稍许调整,由于我之前的txt内标签是字符串,而为了能让对应生成的tag是所要求的,可以传入一个字典,如:
LabelDic={"NORMAL":0,"PNEUMONIA":1}
这样就可以在之后转化为数字的标签,onehot或者怎么怎么样了,,,
Pytorch数据集读入——Dataset类,实现数据集打乱Shuffle的更多相关文章
- 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- pytorch加载语音类自定义数据集
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.u ...
- MindSpore数据集mindspore::dataset
MindSpore数据集mindspore::dataset ResizeBilinear #include <image_process.h> bool ResizeBilinear(L ...
- 镶嵌数据集 Mosaic Dataset 的常见数据组织方式
镶嵌数据集是ESRI公司推出一种用于管理海量影像数据的数据模型,定义在GeoDatabase数据模型中. 它的常见数据组织方式有两种: 1. 源镶嵌数据集 Source Mosaic Dataset ...
- 以Network Dataset(网络数据集)方式实现的最短路径分析
转自原文 以Network Dataset(网络数据集)方式实现的最短路径分析 构建网络有两种方式,分别是网络数据集NetworkDataset和几何网络Geometric Network,这个网络结 ...
- Pytorch入门上 —— Dataset、Tensorboard、Transforms、Dataloader
本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例 ...
- PyTorch笔记之 Dataset 和 Dataloader
一.简介 在 PyTorch 中,我们的数据集往往会用一个类去表示,在训练时用 Dataloader 产生一个 batch 的数据 https://pytorch.org/tutorials/begi ...
- Pandas将中文数据集转换为数值类别型数据集
一个机器学习竞赛中,题目大意如下,本文主要记录数据处理过程,为了模型训练,第一步需要将中文数据集处理为数值类别数据集保存. 基于大数据的运营商投诉与故障关联分析 目标:原始数据集是含大量中文的xls格 ...
- ADO.NET之使用DataSet类更新数据库
1.首先从数据库获得数据填充到DataSet类,该类中的表和数据库中的表相互映射. 2.对DataSet类中的表进行修改(插入,更新,删除等) 3.同步到数据库中:使用SqlDataAdapter实例 ...
随机推荐
- Spring只定义接口自动代理接口实现类
能够扫描到包 @ComponentScan("org.zxp.esclientrhl") ESCRegistrar类主要实现ImportBeanDefinitionRegistra ...
- 【Spring Boot源码分析】@EnableAutoConfiguration注解(一)@AutoConfigurationImportSelector注解的处理
Java及Spring Boot新手,首次尝试源码分析,欢迎指正! 一.概述 @EnableAutoConfiguration注解是Spring Boot中配置自动装载的总开关.本文将从@Enable ...
- Kotlin编译时注解,简单实现ButterKnife
ButterKnife在之前的Android开发中还是比较热门的工具,帮助Android开发者减少代码编写,而且看起来更加的舒适,于是简单实现一下ButterKnife,相信把下面的代码都搞懂,看Bu ...
- java核心技术36讲笔记
Java-Basic 谈谈final. finally. finalize有什么不同? 典型回答: final可以用来修饰类.方法.变量,分别有不同的意义, final修饰的class代表不可以继承扩 ...
- LitePal的聚合函数
传统的聚合函数用法 虽说是聚合函数,但它的用法其实和传统的查询还是差不多的,即仍然使用的是select语句.但是在select语句当中我们通常不会再去指定列名,而是将需要统计的列名传入到聚合函数当 ...
- jsonp与cors跨域解析
1.浏览器的同源安全策略 没错,就是这家伙干的,浏览器只允许请求当前域的资源,而对其他域的资源表示不信任.那怎么才算跨域呢? 请求协议http,https的不同 域domain的不同 端口port的不 ...
- oracle之新建用户与授权
1.登录,口令为Oracle12c 2.新建用户 3.口令自己设置 4.按下图给角色授权,点击用用 5.登录刚刚创建的用户
- 常见Failed to load ApplicationContext异常解决方案!!
java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...
- 2019滴滴php面试总结 (包含面试题解析)
2019滴滴java面试总结 (包含面试题) 本人6年开发经验.今年年初找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.滴滴等公司offer,岗位是既有php也有Java后端开发,最终选择去了滴滴 ...
- SQL注入靶场sqli-labs 1-65关全部通关教程
以前说好复习一遍 结果复习到10关就没继续了 真是废物 一点简单的事做不好 继续把以前有头没尾的事做完 以下为Sqli-lab的靶场全部通关答案 目录: less1-less10 less10-les ...