2019 Multi-University Training Contest 8


C. Acesrc and Good Numbers

题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数。求小于等于 x 的最大的 \(n\) 满足 \(f(d,n)=n\)。

做法

  • 令 \(g(d,n)=f(d,n)-f(n)\),我们要求小于等于 \(x\) 极大的零点。
  • 注意到 \(n>10^{12}\) 一定不存在零点。 [比赛时注意到了这点]
  • Big-Small 战法。
  • 取 B 等于 \(10^6\),求 \(g(d,x)\),可以将 \(x\) 写成 \(x=k*B + t\) 形式。\(t = x\%B\)
  • 按 \(k\) 值对 \(x\) 进行分块。
    • 如果 \(k\) 中有 d,那么 \(g(kB+t)\) 是关于 \(t\) 递增的。
    • 否则,\(|g(kB)|\) 不能太大,否则解体。

E. Acesrc and String Theory

solved by sdcgvhgj 284min -2
题意 求循环重复k次的子串的数量
做法

  • 枚举循环节大小len,那么合法串一定同时包含i和i+len两个位置
  • 计算左端点在\([i-len+1,i]\)的串包含i和i+len两个位置的合法左端点有哪些
  • 设i和i+len这两个前缀的最长公共后缀为k1,这两个后缀的最长公共前缀为k2
  • 那么合法位置的区间为\([max(i-len+1,i-k1+1),min(i,i+k2-(k-1)*len)]\)
  • k=1需要特判
  • 算后缀数组的时候字符串结束要置0,RE了两发

I. Calabash and Landlord

solved by sdcgvhgj 123min -4
题意 求两个矩形将平面划分成了几个联通块
做法

  • 枚举8个点两两中点check在哪些矩形中,算出不同包含关系的数量作为答案,WA
  • 意识到只包含在一个矩形中的区域可以有两块,rdc提出在3x3的格子合并联通块的做法,但感觉不太好写,选择在原代码基础上加两个判断,WA
  • 意识到应该枚举16个点的两两中点,或直接9个格子的中点,写错两发后AC

K. Roundgod and Milk Tea

solved by rdc, 63min -3

题意 \(n\) 个班级,第 \(i\) 个有 \(a_i\) 个人,\(b_i\) 杯奶茶,每个人只能喝别的班的奶茶,输出最多能喝多少杯奶茶。

做法

  • 二分图最大匹配问题,Hall 定理。\(|M|=|U|-max_{S \subset U} (|S|-|N(S)|)\)
  • 对 \(U\) 进行讨论,要么为空集,要么为全集。

复盘

  • 一开始认为给每个人任意匹配一杯奶茶都是合法的。
  • 然后 WA,然后开始贪心匹配奶茶多的班级。
  • 很盲目。
  • 再盲猜 Hall 定理,就过了。
  • 比赛的时候想到的 Hall 定理是二分图存在完美匹配的充要条件,但还是不会证。
  • 题解中的做法,是 Hall 定理的推论。

2019 Multi-University Training Contest 8的更多相关文章

  1. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  2. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  3. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  4. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  5. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  6. 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...

  7. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  8. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 4

    2019 Multi-University Training Contest 4 http://acm.hdu.edu.cn/contests/contest_show.php?cid=851 100 ...

随机推荐

  1. Transformations 方块转换 USACO 模拟 数组 数学 耐心

    1006: 1.2.2 Transformations 方块转换 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 7[提交] [状态] [讨论版] [命题人:外部导入] 题目 ...

  2. 3. 源码分析---SOFARPC客户端服务调用

    我们首先看看BoltClientProxyInvoker的关系图 所以当我们用BoltClientProxyInvoker#invoke的时候实际上是调用了父类的invoke方法 ClientProx ...

  3. 利用模板生成html页面(NVelocity)

    公司的网站需要有些新闻,每次的新闻格式都是一样的,而不想每次都查询操作,所以想把这些新闻的页面保存成静态的html,之后搜索了下就找到了这个模板引擎,当然其他的模板引擎可以的,例如:Razor,自己写 ...

  4. golang const 内itoa 用法详解及优劣分析

    首先itoa 是什么 const 内的 iota是golang语言的常量计数器,只能在常量的表达式中使用,,即const内. iota在const关键字出现时将被重置为0(const内部的第一行之前) ...

  5. Liunx C 编程之多线程与Socket

    多线程 pthread.h是linux特有的头文件,POSIX线程(POSIX threads),简称Pthreads,是线程的POSIX标准.该标准定义了创建和操纵线程的一整套API.在类Unix操 ...

  6. 不用 Spring Security 可否?试试这个小而美的安全框架

    写在前面 在一款应用的整个生命周期,我们都会谈及该应用的数据安全问题.用户的合法性与数据的可见性是数据安全中非常重要的一部分.但是,一方面,不同的应用对于数据的合法性和可见性要求的维度与粒度都有所区别 ...

  7. 使用nginx代理centos yum 源

    我们在安装centos 服务器时,可能会有以下情况: 局域网内有若干台服务器,但是只有一台服务器可以连接外网,其余服务器都不可以连接外网,但通过局域网与外网机器联通. 那么我们再使用 yum 安装软件 ...

  8. 【算法】【排序】【交换类】快速排序QuickSort

    #include<stdio.h> //快速排序 int main(){ ,,,,,,,,}; +; //基准指针 ; //慢指针 int* j=a; //快指针 int QS(int* ...

  9. GooglePlay新版排行榜接入

    新版本的GMS的api和老版本的有很大的差异,刚接了一下,在这里留一个记号,以便查阅:判定是否已经登录 private static boolean isSignedIn(Cocos2dxActivi ...

  10. 《SpringCloud docker》读书笔记

    yml配置意义 当Ribbon和Eureka配合使用时,会自动将虚拟主机名映射成微服务的网络地址. yml中info可以展示一些信息 server: port: 8000 # 指定端口 spring: ...