一、简介

  categorical是pandas中对应分类变量的一种数据类型,与R中的因子型变量比较相似,例如性别、血型等等用于表征类别的变量都可以用其来表示,本文就将针对categorical的相关内容及应用进行介绍。

二、创建与应用

2.1 基本特性和适用场景

  在介绍具体方法之前,我们需要对pandas数据类型中的categorical类型有一个了解,categorical类似R中的因子型变量,可以进行排序操作,但不可以进行数值运算操作,其顺序在其被定义的时候一同确定,而不是按照数字字母词法排序的顺序,其适用场景有如下几个:

  1、具有少数几种可能取值并存在大量重复的字符串字段,利用categorical类型对其转换后可有效节省内存

  2、字段的排序规则特殊,不遵循词法顺序时,可以利用categorical类型对其转换后得到用户所需的排序规则、

2.2 创建方式

  pandas中创建categorical型数据主要有如下几种方式:

  1、对于Series数据结构,传入参数dtype='category'即可:

#直接创建categorical型Series
series_cat = pd.Series(['B','D','C','A'], dtype='category')
#显示Series信息
series_cat

  可以看到,series_cat的类型为category,但是没有声明顺序,这时若对Series排序,实际上还是按照词法的顺序:

series_cat.sort_values()

  2、对于DataFrame,在定义数据之后转换类型:

#创建数据框
df_cat = pd.DataFrame({
'V1':['A','C','B','D']
})
#转换指定列的数据类型为category
df_cat['V1'] = df_cat['V1'].astype('category')
df_cat['V1']

  3、利用pd.Categorical()生成类别型数据后转换为Series,或替换DataFrame中的内容:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'])
series_cat = pd.Series(categorical_)
series_cat

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'])
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  而pd.Categorical()独立创建categorical数据时有两个新的特性,一是其通过参数categories定义类别时,若原数据中出现了categories参数中没有的数据,则会自动转换为pd.nan:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['B','C','D'])
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  另外pd.Categorical()还有一个bool型参数ordered,设置为True时则会按照categories中的顺序定义从小到大的范围:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'],
ordered=True)
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  4、利用pandas.api.types中的CategoricalDtype()对已有数据进行转换

  通过CategoricalDtype(),我们可以结合astype()完成从其他类型数据向categorical数据的转换过程,利用CategoricalDtype()的参数categories、ordered,弥补.astype('category')的短板(实际上.astype('category')等价于.astype(CategoricalDtype(categories=None, ordered=False))):

from pandas.api.types import CategoricalDtype
#创建数据框
df_cat = pd.DataFrame({
'V1':['A','C','B','D']
})
cat = CategoricalDtype(categories=['A','C','B'],
ordered=True)
df_cat['V1'] = df_cat['V1'].astype(cat)
df_cat['V1']

  

2.3 应用

  categorical型数据主要应用于自定义排序,如下例,我们创建了一个包含字符型变量class和数值型变量value的数据框:

import numpy as np

df = pd.DataFrame({
'class':np.random.choice(['A','B','C','D'],10),
'value':np.random.uniform(0,10,10)
})
df.head()

  如果按照class列排序得到的结果是按照字母自然顺序:

df.sort_values('class')

  而通过将class列修改为自己定义的排序方式则得到的结果如下:

from pandas.api.types import CategoricalDtype
cat = CategoricalDtype(categories=['B','D','A','C'],
ordered=True)
df['class'] = df['class'].astype(cat)
df.sort_values('class')

  若想要临时修改排序规则,可以使用.cat.reorder_categories()方法:

df['class'].cat.reorder_categories(['D','B','C','A'],
ordered=True,
inplace=True)#iinplace参数设置为True使得变动覆盖原数据
df.sort_values('class')

  关于pandas中的categorical型数据还有很多的小技巧,因为不常用这里就不再赘述,感兴趣可以查看pandas的官方文档,以上就是本文的全部内容,如有笔误望指出!

(数据科学学习手札68)pandas中的categorical类型及应用的更多相关文章

  1. (数据科学学习手札32)Python中re模块的详细介绍

    一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...

  2. (数据科学学习手札42)folium进阶内容介绍

    一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些 ...

  3. (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...

  4. (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...

  5. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  6. (数据科学学习手札44)在Keras中训练多层感知机

    一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...

  7. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  8. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  9. (数据科学学习手札80)用Python编写小工具下载OSM路网数据

    本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会 ...

随机推荐

  1. Win10系统下安装labelme,json文件批量转化

    一.安装环境:windows10,anaconda3,python3.6         由于框架maskrcnn需要json数据集,在没安装labelme环境和跑深度学习之前,我安装的是anacon ...

  2. 实现万行级excel导出---poi--ooxm的应用和采坑

    xl_echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!! - ...

  3. 蘑菇街工程师常用的Linux命令!

    一.查看日志 线上出现了问题,登上线上的机器查日志是非常常见的操作了.我第一次登上线上机器查日志的时候,我还只记得以下的几个命令(假设现在我们的日志文件叫做service.log): cat serv ...

  4. 【Android】Genymotion 模拟器 Unable to create virtual device

    安装 Genymotion 模拟器的时候报了这个错误,如下: 后来找到了解决方法,见下图: 在 Setting -> Network, 勾选 Use HTTP Proxy, HTTP Proxy ...

  5. [ PyQt入门教程 ] PyQt5信号与槽

    信号和槽是PyQt编程对象之间进行通信的机制.每个继承自QWideget的控件都支持信号与槽机制.信号发射时(发送请求),连接的槽函数就会自动执行(针对请求进行处理).本文主要讲述信号和槽最基本.最经 ...

  6. js实现3D切换效果

    今天分享一个3d翻转动画效果,js+css3+h5实现,没有框架. 先看下html部分: <div class="box"> <ul> <li> ...

  7. Asp.Net MVC 高级特性(附带源码剖析)

    1. 程序入口(MvcHandler,RouteHandler,HttpModule) 2.异步类包(静态类AsyncResultWrapper),开启整个MVC异步循环 3.Aggregate递归链 ...

  8. 【python-django后端开发】Redis缓存配置使用详细教程!!!

    官方查阅资料:https://django-redis-chs.readthedocs.io/zh_CN/latest/ 1. 安装django-redis扩展包 1.安装django-redis扩展 ...

  9. html以前没有学到的标签

    <q>标签,短文本引用 <blockquote>标签,长文本引用 <address>标签,为网页加入地址信息 <code>标签,插入单行代码 <p ...

  10. 放出一批jsp图书管理系统图书借阅系统源码代码运行

    基于jsp+mysql的JSP图书销售管理系统 https://www.icodedock.com/article/105.html基于jsp+Spring+Spring MVC的Spring图书借阅 ...