1.最小生成树介绍

什么是最小生成树?

最小生成树(Minimum spanning tree,MST)是在一个给定的无向图G(V,E)中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有边都是来自图G中的边,并且满足整棵树的边权值和最小。

2.prim算法

和Dijkstra算法很像!!请看如下Gif图,prim算法的核心思想是对图G(V,E)设置集合S,存放已被访问的顶点,然后每次从集合V-S中选择与集合S的最短距离最小的一个顶点(记为u),访问并加入集合S。之后,令顶点u为中间点,优化所有从u能到达的顶点v与集合s之间的最短距离。这样的操作执行n次,直到集合s中包含所有顶点。

不同的是,Dijkstra算法中的dist是从源点s到顶点w的最短路径;而prim算法中的dist是从集合S到顶点w的最短路径,以下是他们的伪码描述对比,关于Dijkstra算法的详细描述请参考文章

算法实现:

#include<iostream>
#include<vector>
#define INF 100000
#define MaxVertex 105
typedef int Vertex;
int G[MaxVertex][MaxVertex];
int parent[MaxVertex]; // 并查集
int dist[MaxVertex]; // 距离
int Nv; // 结点
int Ne; // 边
int sum; // 权重和
using namespace std;
vector<Vertex> MST; // 最小生成树 // 初始化图信息
void build(){
Vertex v1,v2;
int w;
cin>>Nv>>Ne;
for(int i=1;i<=Nv;i++){
for(int j=1;j<=Nv;j++)
G[i][j] = 0; // 初始化图
dist[i] = INF; // 初始化距离
parent[i] = -1; // 初始化并查集
}
// 初始化点
for(int i=0;i<Ne;i++){
cin>>v1>>v2>>w;
G[v1][v2] = w;
G[v2][v1] = w;
}
} // Prim算法前的初始化
void IniPrim(Vertex s){
dist[s] = 0;
MST.push_back(s);
for(Vertex i =1;i<=Nv;i++)
if(G[s][i]){
dist[i] = G[s][i];
parent[i] = s;
}
} // 查找未收录中dist最小的点
Vertex FindMin(){
int min = INF;
Vertex xb = -1;
for(Vertex i=1;i<=Nv;i++)
if(dist[i] && dist[i] < min){
min = dist[i];
xb = i;
}
return xb;
} void output(){
cout<<"被收录顺序:"<<endl;
for(Vertex i=1;i<=Nv;i++)
cout<<MST[i]<<" ";
cout<<"权重和为:"<<sum<<endl;
cout<<"该生成树为:"<<endl;
for(Vertex i=1;i<=Nv;i++)
cout<<parent[i]<<" ";
} void Prim(Vertex s){
IniPrim(s);
while(1){
Vertex v = FindMin();
if(v == -1)
break;
sum += dist[v];
dist[v] = 0;
MST.push_back(v);
for(Vertex w=1;w<=Nv;w++)
if(G[v][w] && dist[w])
if(G[v][w] < dist[w]){
dist[w] = G[v][w];
parent[w] = v;
}
}
} int main(){
build();
Prim(1);
output();
return 0;
}

关于prim算法的更加详细讲解请参考视频

3.kruskal算法

Kruskal算法也可以用来解决最小生成树的问题,其算法思想很容易理解,典型的边贪心,其算法思想为:

  • 在初始状态时隐去图中所有的边,这样图中每个顶点都是一个单独的连通块,一共有n个连通块
  • 对所有边按边权从小到大进行排序
  • 按边权从小到大测试所有边,如果当前测试边所连接的两个顶点不在同一个连通块中,则把这条测试边加入当前最小生成树中,否则,将边舍弃。
  • 重复执行上一步骤,直到最小生成树中的边数等于总顶点数减一 或者测试完所有边时结束;如果结束时,最小生成树的边数小于总顶点数减一,说明该图不连通。

请看下面的Gif图!

算法实现:

#include<iostream>
#include<string>
#include<vector>
#include<queue>
#define INF 100000
#define MaxVertex 105
typedef int Vertex;
int G[MaxVertex][MaxVertex];
int parent[MaxVertex]; // 并查集最小生成树
int Nv; // 结点
int Ne; // 边
int sum; // 权重和
using namespace std;
struct Node{
Vertex v1;
Vertex v2;
int weight; // 权重
// 重载运算符成最大堆
bool operator < (const Node &a) const
{
return weight>a.weight;
}
};
vector<Node> MST; // 最小生成树
priority_queue<Node> q; // 最小堆 // 初始化图信息
void build(){
Vertex v1,v2;
int w;
cin>>Nv>>Ne;
for(int i=1;i<=Nv;i++){
for(int j=1;j<=Nv;j++)
G[i][j] = 0; // 初始化图
parent[i] = -1;
}
// 初始化点
for(int i=0;i<Ne;i++){
cin>>v1>>v2>>w;
struct Node tmpE;
tmpE.v1 = v1;
tmpE.v2 = v2;
tmpE.weight = w;
q.push(tmpE);
}
} // 路径压缩查找
int Find(int x){
if(parent[x] < 0)
return x;
else
return parent[x] = Find(parent[x]);
} // 按秩归并
void Union(int x1,int x2){
if(parent[x1] < parent[x2]){
parent[x1] += parent[x2];
parent[x2] = x1;
}else{
parent[x2] += parent[x1];
parent[x1] = x2;
}
} void Kruskal(){
// 最小生成树的边不到 Nv-1 条且还有边
while(MST.size()!= Nv-1 && !q.empty()){
Node E = q.top(); // 从最小堆取出一条权重最小的边
q.pop(); // 出队这条边
if(Find(E.v1) != Find(E.v2)){ // 检测两条边是否在同一集合
sum += E.weight;
Union(E.v1,E.v2); // 并起来
MST.push_back(E);
}
} } void output(){
cout<<"被收录顺序:"<<endl;
for(Vertex i=0;i<Nv;i++)
cout<<MST[i].weight<<" ";
cout<<"权重和为:"<<sum<<endl;
for(Vertex i=1;i<=Nv;i++)
cout<<parent[i]<<" ";
cout<<endl;
} int main(){
build();
Kruskal();
output();
return 0;
}

关于kruskal算法更详细的讲解请参考视频

【algo&ds】8.最小生成树的更多相关文章

  1. 【algo&ds】4.B树、字典树、红黑树、跳表

    上一节内容[algo&ds]4.树和二叉树.完全二叉树.满二叉树.二叉查找树.平衡二叉树.堆.哈夫曼树.散列表 7.B树 B树的应用可以参考另外一篇文章 8.字典树Trie Trie 树,也叫 ...

  2. DS图--最小生成树

    题目描述 根据输入创建无向网.分别用Prim算法和Kruskal算法构建最小生成树.(假设:输入数据的最小生成树唯一.) 输入 顶点数n n个顶点 边数m m条边信息,格式为:顶点1 顶点2 权值 P ...

  3. 【algo&ds】2.线性表

    1.线性表 线性表(英语:Linear List)是由n(n≥0)个数据元素(结点)a[0],a[1],a[2]-,a[n-1]组成的有限序列. 其中: 数据元素的个数n定义为表的长度 = " ...

  4. 【algo&ds】【吐血整理】4.树和二叉树、完全二叉树、满二叉树、二叉查找树、平衡二叉树、堆、哈夫曼树、B树、字典树、红黑树、跳表、散列表

    本博客内容耗时4天整理,如果需要转载,请注明出处,谢谢. 1.树 1.1树的定义 在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结 ...

  5. 【algo&ds】3.栈和队列

    1.堆栈 堆栈(Stack):具有一定操作约束的线性表(只在一端(栈顶,Top)做插入.删除) 先进后出特性 1.1堆栈的抽象数据类型描述 类型名称: 堆栈(Stack) 数据对象集:一个有0个或多个 ...

  6. 【algo&ds】1.时间复杂度和空间复杂度分析

    1.时间复杂度分析O(f(n)) 分析方法 只关注循环执行次数最多的一段代码 加法原则 乘法原则 高优先级原则 常见时间复杂度量级 多项式量级和非多项式量级.其中,非多项式量级只有两个:O(2^n) ...

  7. 【algo&ds】0.数据结构和算法入门

    解决问题方法的效率,跟数据的组织方式有关 解决问题方法的效率,跟空间的利用效率有关 解决问题方法的效率,跟算法的巧妙程度有关 什么是数据结构 数据对象在计算机中的组织方式 逻辑结构 物理存储结构 数据 ...

  8. 【algo&ds】7.最短路径问题

    单源最短路径问题:从某固定源点出发,求其到所有其他顶点的最短路径 (有向)无权图:BFS (有向)有权图:Dijkstra算法 多源最短路径问题:求任意两顶点间的最短路径 直接将单源最短路算法调用|V ...

  9. 【algo&ds】9.拓扑排序、AOV&AOE、关键路径问题

    对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性 ...

随机推荐

  1. netty中Pipeline的ChannelHandler执行顺序案例详解

    一.netty的Pipeline模型 netty的Pipeline模型用的是责任链设计模式,当boss线程监控到绑定端口上有accept事件,此时会为该socket连接实例化Pipeline,并将In ...

  2. Drive Scope Mac硬盘检查分析神器

    Drive Scope Mac硬盘检查分析神器 硬盘驱动器(和固态驱动器)是Mac中最容易出故障的组件.出于这个原因,事实上,驱动器制造商已将自我监控,分析和报告技术内置于驱动器中.(又名SMART) ...

  3. alinode与node性能测试方法与分析

    需求和技术指标整理 node服务在引入node性能监控过程中,需要使用alinode,为了对alinode与官方node各项性能指标的差异有进一步的认识,现开展以下调研.测试. 原理性分析 alino ...

  4. JavaScript 实用技巧

    1数组中删除重复 let arr = [1,2,4,3,6,4] Array.from(new Set(arr)) // es6中 .from()[1,2,4,3,6] [...new Set(arr ...

  5. ESP8266开发之旅 基础篇② 如何安装ESP8266的Arduino开发环境

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  6. netty源码解析(4.0)-26 ByteBuf内存池:PoolArena-PoolSubpage

    PoolChunk用来分配大于或等于一个page的内存,如果需要小于一个page的内存,需要先从PoolChunk中分配一个page,然后再把一个page切割成多个子页-subpage,最后把内存以s ...

  7. OsmocomBB软件实现栈概况

    OsmocomBB软件实现栈概况 简单地说,本文仅描述软件中GSM信号接收到部分. 暂不提及发送流程,引导加载/引导流程,以及各种控制路径特别是从layer1到RF硬件. 首先,通过天线接收RF信号, ...

  8. macport命令--笔记

    macport命令:sudo port sync //同步本地和全球的ports tree,但不检查自己是否有更新.sudo port install python36 //安装python36sud ...

  9. 使用haproxy实现负载均衡集群

    一.HAProxy概述: HAProxy提供高可用性.负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费.快速并且可靠的一种解决方案.根据官方数据,其最高极限支持10G的并发. HAP ...

  10. [Next] Next.js+Nest.js实现GitHub第三方登录

    GitHub OAuth 第三方登录 第三方登录的关键知识点就是 OAuth2.0 . 第三方登录,实质就是 OAuth 授权 . OAuth 是一个开放标准,允许用户让第三方应用访问某一个网站的资源 ...