首先要知道 (m/1 + m/2 + ... + m/m) 约为 mlogm

还有一个比较明显的结论,如果一个纪念品区间长度大于d,那么如果列车的停车间隔小于等于d,则这个纪念品一定能被买到

然后把区间按长度排序

枚举d,边枚举边加那些长度小于d的区间到线段树当中,这样可以保证一个纪念品不会被加2次

最后输出答案即可

#include <iostream>
#include <algorithm>
using namespace std;
const int Maxn = *;
namespace seqtree
{
struct Tree
{
Tree *ch[];
long long _v, label;
int Num, _l, _r, mid;
Tree() { _v = label = ; Num = ; }
void update();
void maintain();
}Node[Maxn], *null, *Root;
int tot = , _k, _L, _R;
long long v;
void Tree::update()
{
if(!label) return;
_v += Num*label;
if(Num != ) ch[]->label += label, ch[]->label += label;
label = ;
}
void Tree::maintain()
{
ch[]->update(); ch[]->update();
_v = ch[]->_v + ch[]->_v;
}
void protect()
{
null = new Tree();
null->ch[] = null->ch[] = null; null->Num = ;
}
void insert(Tree *&o, int l, int r)
{
int mid = (l+r)/;
if(o == null)
{
o = &Node[tot++];
o->ch[] = o->ch[] = null;
o->_l = l; o->_r = r; o->mid = (l+r)/;
}
if(l == r) { o->_v = v; return; }
if(_k <= mid) insert(o->ch[], l, mid);
else insert(o->ch[], mid+, r);
o->maintain(); o->Num = o->ch[]->Num + o->ch[]->Num;
}
Tree* Build(int n, long long *a)
{
protect(); Root = null;
for(int i = ; i <= n; i++) _k = i, v = a[i], insert(Root, , n);
return Root;
}
long long query(Tree *o)
{
long long ans = ;
o->update();
if(_L <= o->_l && o->_r <= _R) return o->_v;
if(_L <= o->mid) ans += query(o->ch[]);
if(_R > o->mid) ans += query(o->ch[]);
return ans;
}
long long Query(int L, int R) { _L = L; _R = R; return query(Root); }
void change(Tree *o)
{
o->update();
if(_L <= o->_l && o->_r <= _R) { o->label += v; o->update(); return; }
if(_L <= o->mid) change(o->ch[]); if(_R > o->mid) change(o->ch[]);
o->maintain();
}
void Change(int L, int R, int V) { _L = L; _R = R; v = V; change(Root); }
};
using namespace seqtree; struct Data
{
int l, r, v;
bool operator < (const Data &B) const
{ return v < B.v; }
}A[Maxn]; int n, m, l, r;
long long a[Maxn], ANS[Maxn];
int main()
{
cin.sync_with_stdio(false);
cin>>n>>m;
Build(m+, a);
for(int i = ; i < n; i++)
{
cin>>A[i].l>>A[i].r;
A[i].v = A[i].r - A[i].l + ;
}
sort(A, A+n);
int k = ;
for(int i = ; i <= m; i++)
{
for(; A[k].v < i && k < n; k++) Change(A[k].l, A[k].r, );
int ans = n - k;
for(int j = i; j <= m; j += i) ans += Query(j, j);
cout<<ans<<endl;
}
}

arc068 E: Snuke Line的更多相关文章

  1. ARC068E - Snuke Line

    原题链接 题意简述 给出个区间和.求对于任意,有多少个区间包含的倍数. 题解 考虑怎样的区间不包含的倍数. 对于的倍数和,满足的区间不包含任何的倍数. 于是转化为二维数点问题,可以用可持久化线段树解决 ...

  2. AtCoder Regular Contest 068E:Snuke Line

    题目传送门:https://arc068.contest.atcoder.jp/tasks/arc068_c 题目翻译 直线上有\(0-m\)这\(m+1\)个点,一共有\(m\)辆火车.第\(i\) ...

  3. 【AtCoder - 2300】Snuke Line(树状数组)

    BUPT2017 wintertraining(15) #9A 题意 有n个纪念品,购买区间是\([l_i,r_i]\).求每i(1-m)站停一次,可以买到多少纪念品. 题解 每隔d站停一次的列车,一 ...

  4. 【arc068E】Snuke Line

    Portal -->arc068E (温馨提示:那啥..因为各种奇怪的我也不知道的原因这题的题号在某度上面显示出来是agc007F...然而下面是arc068E的题解qwq给大家带来不便之处真是 ...

  5. [arc086e]snuke line

    题意: 有n个区间,询问对于$1\leq i\leq m$的每个i,有多少个区间至少包含一个i的倍数? $1\leq N\leq 3\times 10^5$ $1\leq M\leq 10^5$ 题解 ...

  6. 【AtCoder】ARC068

    ARC 068 C - X: Yet Another Die Game 显然最多的就是一次6一次5 最后剩下的可能需要多用一次6或者6和5都用上 #include <bits/stdc++.h& ...

  7. AtCoder Regular Contest

    一句话题解 因为上篇AGC的写的有点长……估计这篇也短不了所以放个一句话题解方便查阅啥的吧QwQ 具体的题意代码题解还是往下翻…… ARC 058 D:简单容斥计数. E:用二进制表示放的数字,然后状 ...

  8. NOIp模拟赛三十

    心态崩了的一天 先Orz yrx 开场五分钟yrx大吼一声:“这B题不是原题吗” hjw:“对哦好像我也做过哦” 过了十分钟yrx又大吼一声:“这C题我也做过啊,洪水那题啊” 于是 像我这种傻逼A题一 ...

  9. Snuke's Subway Trip

    すぬけ君の地下鉄旅行 / Snuke's Subway Trip Time limit : 3sec / Memory limit : 256MB Score : 600 points Problem ...

随机推荐

  1. jQuery代码解释(基本语法)

    html中jquery的以下用法 求解: var header = {}; header.ajaxCallComplete = false; header.login = false; header. ...

  2. Scrapy之Cookie和代理

    cookie cookie: 获取百度翻译某个词条的结果 一定要对start_requests方法进行重写. 两种解决方案: 1. Request()方法中给method属性赋值成post2. For ...

  3. 20145202 2016-2017-2 《Java程序设计》第一周学习总结

    20145202 2016-2017-2 <Java程序设计>第一周学习总结 教材学习内容总结 java是SUN公司推出的面相网络的编程语言. 特点:完全面向对象,与平台无关,跨平台性(例 ...

  4. Eclipse 导入项目与 svn 插件关联全过程记录

    文章摘自:http://www.cnblogs.com/xmmcn/archive/2013/03/01/2938365.html 感谢博友分享! Eclipse 导入项目与 svn 插件关联全过程记 ...

  5. luogu4238 【模板】多项式求逆

    ref #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...

  6. 我的阿里之路+Java面经考点

    我的阿里之路+Java面经考点 时间:2018-03-19 23:03  来源:未知   作者:admin   点击:87次 我的2017是忙碌的一年,从年初备战实习春招,年三十都在死磕JDK源码,三 ...

  7. Qt用委托绘制需要的图形的步骤

    1.拷贝一份option: QStyleOptionViewItemV4 opt = option; 2.获取到widget,也是通过QStyleOptionViewItem &option ...

  8. Qt 隐藏标题栏可移动升级版

    在最出的时候,在Qt程序隐藏标题栏的情况下,实现界面可拖拽移动,是鼠标在在程序界面的任意位置都可以,现在这个版本是需要鼠标在程序界面的特定位置开可以 上代码 static QPoint last(0, ...

  9. C# 删除文件错误 access denied

    使用以下代码正常删除整个文件夹内容时,报错如下: if (backupPathDir.Exists) { System.IO.DirectoryInfo di = new DirectoryInfo( ...

  10. win10激活方法-专业版

    该教程操作思路,Win10家庭版升为专业版,然后激活版本 首先,进入设置→关于看到如下页面: 接着,进入实操阶段: 第一步   在激活版面输入密匙   ( 把家庭版升级为专业版 ) DR9VN-GF3 ...