哇好开心啊!写的时候真的全然对于这个加法没有把握,但还是大着胆子试着写了一下——竟然过了样例?于是又调了一下就过啦。

不过想想也觉得是正确的吧,互相独立的事件对于期望的影响自然也是相互独立的,可以把所有的情况看成一个整体,不同的统计方式只是分组的区别,最后算出来的答案肯定是一样的。dp的状态比较显然:dp[i][j][0/1]代表当前在第i节课,已经用去了j次申请的机会,0/1分别代表当前这一节课是否申请。那么这个时候就分情况讨论,计算这一次的选择对于答案的影响。

这些不同的情况分别是:当前和上一次是否选择申请换课,申请换课的是否成功。

期望的计算式:成功的概率*成功的代价+失败的概率*失败的代价。

#include <bits/stdc++.h>
using namespace std;
#define maxn 2050
#define INF 1047483640
#define maxm 2050
#define maxv 400
int n, m, v, e, dis[maxv][maxv], c[maxn], d[maxn];
double ans = , dp[maxn][maxm][], k[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void init()
{
for(int i = ; i <= v; i ++)
for(int j = i + ; j <= v; j ++)
dis[i][j] = dis[j][i] = INF; for(int i = ; i <= n; i ++)
for(int j = ; j <= m; j ++)
dp[i][j][] = dp[i][j][] = INF;
} double gmin(double &x, double y)
{
x = (x < y) ? x : y;
} int gmin2(int &x, int y)
{
x = (x < y) ? x : y;
} void Floyd()
{
for(int k = ; k <= v; k ++)
for(int i = ; i <= v; i ++)
for(int j = ; j <= v; j ++)
gmin2(dis[i][j], dis[i][k] + dis[k][j]);
} int main()
{
n = read(), m = read(), v= read(), e = read();
for(int i = ; i <= n; i ++) c[i] = read();
for(int i = ; i <= n; i ++) d[i] = read();
init();
dp[][][] = dp[][][] = ;
for(int i = ; i <= n; i ++) scanf("%lf", &k[i]);
for(int i = ; i <= e; i ++)
{
int x = read(), y = read(), z = read();
dis[x][y] = dis[y][x] = min(dis[y][x], z);
}
for(int i = ; i <= v; i ++) dis[i][i] = ;
Floyd();
for(int i = ; i <= v; i ++)
dis[i][] = dis[][i] = ;
c[] = d[] = , k[] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= m; j ++)
{
gmin(dp[i][j][], dp[i - ][j][] + dis[c[i]][c[i - ]]);
gmin(dp[i][j][], dp[i - ][j][] + dis[c[i]][c[i - ]] * ( - k[i - ]) + dis[c[i]][d[i - ]] * k[i - ]);
if(j) gmin(dp[i][j][], dp[i - ][j - ][] + dis[c[i]][c[i - ]] * ( - k[i]) + dis[d[i]][c[i - ]] * k[i]);
double tem = ;
tem += dis[c[i]][c[i - ]] * ( - k[i]) * ( - k[i - ]);
tem += dis[c[i]][d[i - ]] * ( - k[i]) * k[i - ];
tem += dis[d[i]][c[i - ]] * k[i] * ( - k[i - ]);
tem += dis[d[i]][d[i - ]] * k[i] * k[i - ];
if(j) gmin(dp[i][j][], dp[i - ][j - ][] + tem);
}
for(int i = ; i <= m; i ++)
gmin(ans, min(dp[n][i][], dp[n][i][]));
printf("%.2lf", ans);
return ;
}

【题解】NOIP2016换教室的更多相关文章

  1. [NOIP2016]换教室 题解(奇怪的三种状态)

    2558. [NOIP2016]换教室 [题目描述] 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1< ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. BZOJ 4720 [Noip2016]换教室

    4720: [Noip2016]换教室 Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i( ...

  4. 【BZOJ】4720: [Noip2016]换教室

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1690  Solved: 979[Submit][Status ...

  5. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  6. 【bzoj4720】[NOIP2016]换教室

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  7. [NOIP2016]换教室(概率期望$DP$)

    其实吧我老早就把这题切了--因为说实话,这道题确实不难啊--李云龙:比他娘的状压DP简单多了 今天我翻以前在Luogu上写的题解时,突然发现放错代码了,然后被一堆人\(hack\)--蓝瘦啊\(ORZ ...

  8. 【bzoj4720】[NOIP2016]换教室 期望dp

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  9. [NOIp2016] 换教室

    题目类型:期望\(DP\) 传送门:>Here< 题意:现有\(N\)个时间段,每个时间段上一节课.如果不申请换教室,那么时间段\(i\)必须去教室\(c[i]\)上课,如果申请换课成功, ...

  10. NOIP2016换教室 BZOJ 4720

    BZOJ 4720 换教室 题目描述: 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上 ...

随机推荐

  1. 初次了解MVC框架模式

    MVC框架:即Model.View.Controller即模型.视图.控制器. View层是界面,Model层是业务逻辑,Controller层用来调度View层和Model层,将显示界面和业务逻辑合 ...

  2. 【ssh服务配置】

    根据项目需求,搭建好拓扑图如下: 第一种验证方式:给予密码和用户名登录 Ssh server配置: 首先在服务器上创建一个rsa加密算法的秘钥对: 对ssh服务进行开启: 创建用户的虚拟终端登录界面: ...

  3. ES6、7、8、9新语法新特性

    前言 如果你擅长这种扩散式学习方式,不妨再进一步温习一下整个 ES6 引入的新特性,笔者强烈推荐阮一峰老师的 ECMAScript 6 入门 一书. ES2018 引入的特性还太新,单在对 ES6 特 ...

  4. Python学习 :文件操作

    文件基本操作流程: 一. 创建文件对象 二. 调用文件方法进行操作 三. 关闭文件(注意:只有在关闭文件后,才会写入数据) fh = open('李白诗句','w',encoding='utf-8') ...

  5. python3 练习题100例 (二十三)与7相关的数

    与7相关的数:如果一个正整数,它能被7整除或者它的十进制表示法中某个位数上的数字为7,则称之为与7相关的数.(10分) 题目内容: 现在我们给定一个正整数n(n<1000),求所有小于等于n的与 ...

  6. (杭电 1097)A hard puzzle

    A hard puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. 字典树(Trie)的学习笔记

    按照一本通往下学,学到吐血了... 例题1 字典树模板题吗. 先讲讲字典树: 给出代码(太简单了...)! #include<cstdio> #include<cstring> ...

  8. 45-Identity MVC:注册逻辑实现

    1-注册页Register.cshtml <h3>Register</h3> @model MvcCookieAuthSample.ViewModel.RegisterView ...

  9. ArrayMap java.lang.ArrayIndexOutOfBoundsException

    错误堆栈: java.lang.ArrayIndexOutOfBoundsException: length=0; index=1 at android.support.v4.util.SimpleA ...

  10. 台湾ML笔记--1.2 formalize the learning probelm

    Basic notations input:     x∈χ  (customer application) output:   y∈y  (good/bad after approving cred ...