题目链接

题意 :给你一个n,让你找出小于等于n的数中因子个数最多的那个数,并且输出因子个数,如果有多个答案,输出数最小的那个

思路 : 官方题解 :

(1)此题最容易想到的是穷举,但是肯定超时。

(2)我们可以知道,计算约数的个数和质因数分解有着很大的联系: 若Q的质因数分解为:Q=p1^k1*p2^k2*…*pm^km(p1…pm为素数,k1…km≥1),则Q有(k1+1)(k2+1)…(km+1)个约数。但是质因数分解的时间复杂度很高,所以也会超时。

(3)通过以上的公式,我们可以“突发奇想”:为何不能把质因数分解的过程反过来呢? 这个算法就是枚举每一个素数。初始时让m=1,然后从最小的素数2开始枚举,枚举因子中包含0个2、1个2、2个2…k个2,直至m*2^k大于区间的上限N。在这个基础上枚举3、5、7……的情况,算出现在已经得到的m的约数个数,同时与原有的记录进行比较和替换。直至所有的情况都被判定过了。 这个算法的优化:如果p1*p2*p3*……*pk>N(pi表示第i个素数),那么只要枚举到p k-1,既不浪费时间,也不会遗漏。

(4)以上的算法还不是最好的,还可以继续优化。 我们看以下的例子: 6=2*3 10=2*5 6和10的质因数分解“模式”完全相同,所以它们的约数个数是相同的。但是由于3<5,所以6<10。 12=2^2*3 18=3^2*2 12和18的质因数分解“模式”完全相同,所以它们的约数个数是相同的。但是由于12的质因数分解中2的指数大于3的指数,18的质因数分解中3的指数大于2的指数,所以12<18。 根据以上的举例,我们也可以对(3)中的算法进行一个改进:可以在枚举时进行一个优化,使得枚举到的数字中2的指数不小于3的指数,3的指数不小于5的指数……这样我们就能够得到质因数分解“模式”相同的最小数(证明略)。再对于每一个得到的数进行比较和记录。这个算法的优化力度极大,效率几乎达到了极限。

 #include <stdio.h>
#include <string.h>
#include <iostream>
#define LL long long
using namespace std ; LL n,minnum,cnt ;
const int prime[] = {,,,,,,,,,,,,,,,} ; //num:当前枚举到的数,k:枚举到的第k大的质因子;cntt:该数的约数个数;maxxcnt:质因子个数上限;
void dfs(LL num,LL k,LL cntt,int maxxcnt)
{
if(k >= ) return ; //如果约数个数更多或者相同,将最优解更新为当前数;
if(cntt > cnt || (cntt == cnt && num < minnum))
{
cnt = cntt ;
minnum = num ;
}
LL temp = num ;
for(LL i = ; i <= maxxcnt ; i++) //开始枚举每个质因子的个数;
{
if(temp > n / prime[k])
break ;
temp *= prime[k] ; //累乘到当前数;
dfs(temp,k+,cntt*(i+),i) ;
}
}
int main()
{
int T ;
scanf("%d",&T) ;
while(T--)
{
scanf("%I64d",&n) ;
minnum = cnt = ;
dfs(,,,) ;
printf("%I64d %I64d\n",minnum,cnt) ;
}
return ;
}

反素数介绍

URAL 1748. The Most Complex Number(反素数)的更多相关文章

  1. URAL 1748 The Most Complex Number

    题目链接:https://vjudge.net/problem/11177 题目大意: 求小于等于 n 的最大反素数. 分析: n <= 10^18,而前20个素数的乘积早超过10^18,因此可 ...

  2. ural 1748 The Most Complex Number 和 丑数

    题目:http://acm.timus.ru/problem.aspx?space=1&num=1748 题意:求n范围内约数个数最多的那个数. Roughly speaking, for a ...

  3. Codeforces Beta Round #27 (Codeforces format, Div. 2) E. Number With The Given Amount Of Divisors 反素数

    E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...

  4. 1060 最复杂的数(反素数玄学dfs)

    1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...

  5. 【POJ2886】Who Gets the Most Candies?-线段树+反素数

    Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...

  6. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

  7. URAL1748. The Most Complex Number

    1748 反素数 素数的个数随大小的递增而递减 可以相同 注意各种超啊 #include <iostream> #include<cstdio> #include<cst ...

  8. CodeForces - 27E--Number With The Given Amount Of Divisors(反素数)

    CodeForces - 27E Number With The Given Amount Of Divisors Submit Status Description Given the number ...

  9. (中等) POJ 2886 Who Gets the Most Candies? , 反素数+线段树。

    Description N children are sitting in a circle to play a game. The children are numbered from 1 to N ...

随机推荐

  1. 【android】Socket简单用法

    Socket通常也称做”套接字“,用于描述IP地址和端口,废话不多说,它就是网络通信过程中端点的抽象表示.值得一提的是,Java在包java.net中提供了两个类Socket和ServerSocket ...

  2. Python学习笔记之__init__.py文件的作用

    参考地址:http://www.cnblogs.com/Lands-ljk/p/5880483.html Python __init__.py 作用详解 __init__.py 文件的作用是将文件夹变 ...

  3. fuser命令

    fuser命令 http://blog.itpub.net/27573546/viewspace-765240/

  4. redis和phpredis扩展的安装

    redis的安装https://code.google.com/p/redis/downloads/list下载redisredis-2.6.13.tar.gztar -xvzf redis-2.6. ...

  5. (转)Socket开发时,Available为0,实际还有数据的问题

    本文转载自:http://blog.csdn.net/youbl/article/details/11067369 这段时间处理Socket通讯,比如文件传输,通常代码如下:string filena ...

  6. JAVA 1.7并发之LinkedTransferQueue原理理解

    昨天刚看完BlockingQueue觉得好高级啊,今天扫到1.7就发现了升级版.... 如果对内容觉得不够充分,可以去看http://www.cs.rochester.edu/u/scott/pape ...

  7. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  8. Vue.js:组件

    ylbtech-Vue.js:组件 1.返回顶部 1. Vue.js 组件 组件(Component)是 Vue.js 最强大的功能之一. 组件可以扩展 HTML 元素,封装可重用的代码. 组件系统让 ...

  9. U-boot分析与移植(2)----U-boot stage1分析

    我们要生成u-boot.bin文件,它首先依赖于很多.o文件和.lds链接脚本文件 我们只要找到对应的.lds链接脚本文件就可以分析u-boot的启动流程. 1.打开u-boot-1.1.6\u-bo ...

  10. java成神之——安全和密码

    安全和密码 加密算法 公钥和私钥加密解密 生成私钥和公钥 加密数据 解密数据 公钥私钥生成的不同算法 密钥签名 生成加密随机数 基本用法 指定算法 加密对象 SealedObject Signatur ...