题目描述 Description

在一个凹槽中放置了n层砖块,最上面的一层有n块砖,第二层有n-1块,……最下面一层仅有一块砖。第i层的砖块从左至右编号为1,2,……i,第i层的第j块砖有一个价值a[i,j](a[i,j]<=50)。下面是一个有5层砖块的例子。如果你要敲掉第i层的第j块砖的话,若i=1,你可以直接敲掉它,若i>1,则你必须先敲掉第i-1层的第j和第j+1块砖。

你的任务是从一个有n(n<=50)层的砖块堆中,敲掉(m<=500)块砖,使得被敲掉的这些砖块的价值总和最大。

输入描述 Input Description

你将从文件中读入数据,数据的第一行为两个正整数,分别表示n,m,接下来的第i每行有n-i+1个数据,分别表示a[i,1],a[i,2]……a[i,n – i + 1]。

输出描述 Output Description

输出文件中仅有一个正整数,表示被敲掉砖块的最大价值总和。

样例输入 Sample Input

4 5

2 2 3 4

8 2 7

2 3

49

样例输出 Sample Output

19

数据范围及提示 Data Size & Hint

敲掉第一层的四块砖,再敲掉第二层的第一块砖,2+2+3+4+8=19

/*
直接做DP可能是不好做的,因为一个块是否能被打,还取决于别的块,也就是说,有后效性,那怎么办呢?
我们发现如果某个块被打下来的话,它上面的所有的块一定都被打下来了,所以我们可以将图旋转90°。
设f[i][j][k]表示前i行(旋转之后的行),选了j个,第i行选前k个的最大值。
转移方程:f[i][j][k]=max(f[i-1][j-p][p]+sum[i][k])(sum[i][k]是第i行选前k个的价值)。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 60
using namespace std;
int a[N][N],sum[N][N],f[N][N*][N],n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=n-i+;j++)
scanf("%d",&a[i+j-][i]);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
sum[i][j]=sum[i][j-]+a[i][j];
memset(f,-/,sizeof(f));
f[][][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=j;k++){
for(int p=max(,k-);p<=i-;p++)
f[i][j][k]=max(f[i-][j-k][p]+sum[i][k],f[i][j][k]);
}
int ans=;
for(int i=;i<=n;i++)
for(int k=;k<=m;k++)
ans=max(ans,f[i][m][k]);
printf("%d",ans);
return ;
}

打砖块(codevs 1257)的更多相关文章

  1. Codevs 1257 打砖块

    1257 打砖块 http://codevs.cn/problem/1257/ 题目描述 Description 在一个凹槽中放置了n层砖块,最上面的一层有n块砖,第二层有n-1块,……最下面一层仅有 ...

  2. 【codevs1257】 打砖块

    http://codevs.cn/problem/1257/ (题目链接) 题意 在等腰三角形上打砖块,总共有m发炮弹,每块砖有一个权值,求打出的最大权值 Solution 今天考试题,考场上的2个小 ...

  3. [HNOI2004]打砖块(敲砖块)

    题目:codevs1257.洛谷P1437 题目大意:有一些砖块呈倒三角形状,每块砖敲掉后有一个分数.除第一行外,敲掉一块砖必须先把上面两块砖敲掉.现在你能敲m块砖,求能得到的最大分数. 解题思路:此 ...

  4. [洛谷1437&Codevs1257]敲砖块<恶心的dp>

    题目链接:https://www.luogu.org/problem/show?pid=1437#sub http://codevs.cn/problem/1257/ 不得不说,这个题非常的恶心,在初 ...

  5. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  6. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  7. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  8. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  9. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

随机推荐

  1. Microsoft Security Essentials 和 Windows Defender 离线升级包下载地址

    自从微软提供了免费的杀毒软件之后我就卸载掉了其他的杀毒软件.但是最近遇到了个小问题,我这里有一批电脑不能联网,杀毒软件的升级成了问题.在网上搜索了一番,终于找到了官方的离线升级包下载地址.放在这里备用 ...

  2. Spring MVC: 环境搭建并实现简易的HelloWorld

    第一步:使用配置Tomcat服务器的Eclipse新建一个名为“TestSpringMVC”的web项目 第二步:将所使用的jar包复制到WEB-INF/lib目录下 第三步:在web.xml中配置D ...

  3. 第二十篇 sys模块

    修改环境变量 import sys sys.path.append() 但是,这种修复方式只是临时修改 如果要永久修改,就要电脑里配置环境变量. sys.argv:命令行参数List,第一个元素是程序 ...

  4. spring boot 打包问题

    一.jar包 1.maven build package 2.linux 下执行 java -jar & 命令后台运行,也可加入服务运行 二.war包 1.将pom中的<packagin ...

  5. P5056 插头dp

    题面 Source: unordered_map: #include <iostream> #include <tr1/unordered_map> #include < ...

  6. HDU 3269 P2P File Sharing System(模拟)(2009 Asia Ningbo Regional Contest)

    Problem Description Peer-to-peer(P2P) computing technology has been widely used on the Internet to e ...

  7. 并查集——poj2236(带权并查集)

    题目:Wireless Network 题意:给定n台已损坏计算机的位置和计算机最远通信距离d,然后分别根据命令执行以下两种操作: "O p" (1 <= p <= N ...

  8. [译]如何去除Git的unstaged的文件提示“old mode 100755 new mode 100644”?

    原文来源:https://stackoverflow.com/questions/1257592/how-do-i-remove-files-saying-old-mode-100755-new-mo ...

  9. 软工实践 - 第二十六次作业 Beta 冲刺(4/7)

    队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10124816.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...

  10. HTML文档插入JS代码的几种方法

    在HTML文档里嵌入客户端JavaScript代码有4中方法: 1.内联,放置在< script>和标签对之间. 2.放置在由< script>标签的src属性指定的外部文件中 ...