【Atcoder】ARC082 E - ConvexScore
【算法】计算几何
【题意】给定平面直角坐标系上的若干个点,任意选点连成凸多边形,凸多边形的价值定义为2^(n-|S|),其中n为凸多边形内部点数(含边界),|S|为顶点数,求总价值。n<=10^5。
【题解】
首先凸多边形的价值转化为凸多边形内部点数的选择方案(每个点选或不选)。
先考虑没有多点共线的情况。
本题中,对于每个方案,凸多边形外面没有点。①
对于一个若干点的图,只有唯一的凸多边形包括整个图。②
由上可知,①和②等价,也就是对于整个图枚举点选或不选的方案,唯一对应了一个答案,总价值为2^n-n^2-1(n为总点数,减去选0.1.2个点的方案)。
再来处理多点共线的情况,显然不能使选择的所有点都在同一直线上,所以枚举同一直线上的点数减去,细节见代码。
本题套路:枚举同一直线上的点,利用在同一直线上的点必定在其中两个点组成的直线上的原理,只需枚举任意两点,再枚举第三点是否在该直线上即可,复杂度O(1/6*n^3)。
题外套路:枚举多少直线交于一点,利用交于同一点的直线必然经过其中两条直线相交点的原理,直接枚举两条直线后再枚举第三条即可。
#include<cstdio>
int n,d,ans,x[],y[],p[];
int main(){
scanf("%d",&n);
int M=;
p[]=;
for(int i=;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
p[i]=1ll*p[i-]*%M;
}
ans=p[n]-n-;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
d=;
for(int k=j+;k<=n;k++)d+=(y[i]-y[j])*(x[i]-x[k])==(y[i]-y[k])*(x[i]-x[j]);
ans=(ans+M-p[d])%M;
}
}
printf("%d",ans);
}
【Atcoder】ARC082 E - ConvexScore的更多相关文章
- 【AtCoder】ARC082 F - Sandglass
[链接]F - Sandglass [题意]给定沙漏A和B,分别装着a和X-a的沙子,开始时A在上B在下,每秒漏1,漏完不再漏.给定n,有n个时刻ai沙漏倒转.给定m个询问,每次询问给定初值a和时刻t ...
- 【AtCoder】ARC082
C - Together 用一个数组记一下一个数给它本身,左右贡献都是1,看看哪个数的总贡献最大 #include <bits/stdc++.h> #define fi first #de ...
- 【AtCoder】ARC092 D - Two Sequences
[题目]AtCoder Regular Contest 092 D - Two Sequences [题意]给定n个数的数组A和数组B,求所有A[i]+B[j]的异或和(1<=i,j<=n ...
- 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring
[题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...
- 【AtCoder】ARC 081 E - Don't Be a Subsequence
[题意]给定长度为n(<=2*10^5)的字符串,求最短的字典序最小的非子序列字符串. http://arc081.contest.atcoder.jp/tasks/arc081_c [算法]字 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【AtCoder】ARC067 F - Yakiniku Restaurants 单调栈+矩阵差分
[题目]F - Yakiniku Restaurants [题意]给定n和m,有n个饭店和m张票,给出Ai表示从饭店i到i+1的距离,给出矩阵B(i,j)表示在第i家饭店使用票j的收益,求任选起点和终 ...
- 【AtCoder】ARC095 E - Symmetric Grid 模拟
[题目]E - Symmetric Grid [题意]给定n*m的小写字母矩阵,求是否能通过若干行互换和列互换使得矩阵中心对称.n,m<=12. [算法]模拟 [题解]首先行列操作独立,如果已确 ...
随机推荐
- [转] Bash脚本:怎样一行行地读文件(最好和最坏的方法)
用bash脚本读文件的方法有很多.请看第一部分,我使用了while循环及其后的管道命令(|)(cat $FILE | while read line; do … ),并在循环当中递增 i 的值,最后, ...
- 【连载】Bootstrap开发漂亮的前端界面之插件开发
相关文章: 1.<教你用Bootstrap开发漂亮的前端界面> 2.<Bootstrap开发漂亮的前端界面之实现原理> 3.<Bootstrap开发漂亮的前端界面之自定义 ...
- Qt 编译时遇到 error: [debug/qrc_music.cpp] Error 1
第一种方式,清理编译文件 把Qdebug release 文件件都删除, 删除makefile 文件 尝试重新编译 以上是网上寻找的结果 以下是我的解决方法 如果还抱错,请检查qrc文件是否存在异常 ...
- Git 使用 粗糙记录
版本控制应该是每一个开发人员应该会的东西,奈何,学校没有学习,随着写代码的时间的加长,越来月觉得版本控制的必要性了. 记得在实习的公司,同一痛的都是SVN. 至于GIt和SVN的区别,直接看连接 ht ...
- deepin linux 安装/启动jeakins报错:处理
ERROR: No Java executable found in current PATH: /bin:/usr/bin:/sbin:/usr/sbin 安装报错: 1.如还未安装java,则安装 ...
- lock关键字的使用
最近在代码中,发现别人使用了lock关键字,为了理解别人写的代码,所以自己对lock关键字的使用研究了下. 微软官方解释,请百度:lock 语句(C# 参考) 微软给了个官网实例代码: class A ...
- sping事务的理解
阅读数:2020 一.事务的基本原理 Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的.对于纯JDBC操作数据库,想要用到事务,可以按照以下步骤 ...
- Delphi中动态创建窗体有四种方式
Delphi中动态创建窗体有四种方式,最好的方式如下: 比如在第一个窗体中调用每二个,主为第一个,第二个设为动态创建 Uses Unit2; //引用单元文件 procedure TForm1.But ...
- java实现分页功能的类
package smn.util; public class Pager { private int pageNow; private int pageSize=4; private int tota ...
- 51nod 1831 小C的游戏(博弈论+打表)
比较坑的题目. 题意就是:给出一堆石子,一次操作可以变成它的约数个,也可以拿只拿一个,不能变成一个,最后拿的人输. 经过打表发现 几乎所有质数都是先手必败的,几乎所有合数都是先手必胜的 只有几个例外, ...