CF821E 【Okabe and El Psy Kongroo】
首先我们从最简单的dp开始
\(dp[i][j]=dp[i-1][j]+dp[i-1][j+1]+dp[i-1][j-1]\)
然后这是一个O(NM)的做法,肯定行不通,然后我们考虑使用矩阵加速
\(\begin{bmatrix} 1\\ 0 \\0\\0\end{bmatrix}\quad\)
鉴于纵坐标很小,考虑全部记录下来。写成一个向量的形式。如上,
第i行的数表示纵坐标为i-1的方案数。
然后我们考虑转移
\(\begin{bmatrix} 1&1&0&0\\1&1&1&0 \\0&1&1&1\\0&0&1&1\end{bmatrix}\quad\)
我们将不考虑线段的转移写成以上形式,然后考虑一下如果有线段影响呢?
我们可以类比得到,上一个矩阵中的边界是3,如果我们人为规定上边界是2的话。转移就成了这个样子
\(\begin{bmatrix} 1&1&0&0\\1&1&1&0 \\0&1&1&0\\0&0&0&0\end{bmatrix}\quad\)
然后我们发现,如果不是上边界和下边界时,matrix[i][i].matrix[i][i-1].matrix[i][i+1]都是1,然后上下边界自己处理就可以了。
然后我们上一个矩阵快速幂就可以了
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const long long mod=1e9+7;
struct node
{
int n,m;
long long base[20][20];
node operator * (const node &a)const
{
node r;
r.n=n,r.m=a.m;
for(int i=0;i<=n;i++) for(int j=0;j<=a.m;j++) r.base[i][j]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=a.m;j++)
for(int k=1;k<=m;k++)
r.base[i][j]=(r.base[i][j]+base[i][k]*a.base[k][j])%mod;
return r;
}
};//矩阵模板
node pas,ans;
long long a[120],b[120],c[120];
node kasumi(long long k)
{
node res;
res.n=res.m=pas.n;
for(int i=0;i<=res.n;i++) for(int j=0;j<=res.m;j++) res.base[i][j]=0;
for(int i=0;i<=res.n;i++) res.base[i][i]=1;
while(k)
{
if(k&1) res=res*pas;
pas=pas*pas;
k>>=1;
}
return res;//快速幂
}
int main()
{
long long n,k;
scanf("%lld%lld",&n,&k);
ans.n=1;ans.m=16;
for(int i=1;i<=16;i++) for(int j=1;j<=16;j++) ans.base[i][j]=0;//读入数据
ans.base[1][1]=1;//处理初始数据
pas.n=16;pas.m=16;
for(int i=1;i<=n;i++) scanf("%lld%lld%lld",&a[i],&b[i],&c[i]);//输入
for(int l=1;l<=n;l++)//然后按照顺序遍历线段
{
for(int i=0;i<=16;i++) for(int j=0;j<=16;j++) pas.base[i][j]=0;//重新清零
for(int i=1;i<=c[l]+1;i++)
{//处理转移数组
if(i!=1) pas.base[i][i-1]=1;
pas.base[i][i]=1;
if(i!=c[l]+1) pas.base[i][i+1]=1;
}
ans=ans*kasumi(min(b[l],k)-a[l]);//快速幂就可以了
}
printf("%lld",ans.base[1][1]);
}
CF821E 【Okabe and El Psy Kongroo】的更多相关文章
- Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo 矩阵快速幂优化dp
E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces 821E Okabe and El Psy Kongroo(矩阵快速幂)
E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo DP+矩阵快速幂加速
E. Okabe and El Psy Kongroo Okabe likes to take walks but knows that spies from the Organization ...
- Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo dp+矩阵快速幂
E. Okabe and El Psy Kongroo Okabe likes to take walks but knows that spies from the Organization c ...
- 【codeforces 821E】Okabe and El Psy Kongroo
[题目链接]:http://codeforces.com/problemset/problem/821/E [题意] 一开始位于(0,0)的位置; 然后你每次可以往右上,右,右下3走一步; (x+1, ...
- Codeforces 821E Okabe and El Psy Kongroo
题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y-1)或者(x+1,y)或者(x+1,y+1)三个位子之一.现在一共有N段线段,每条线段都是平行于X ...
- CF821 E. Okabe and El Psy Kongroo 矩阵快速幂
LINK 题意:给出$n$条平行于x轴的线段,终点$k$坐标$(k <= 10^{18})$,现在可以在线段之间进行移动,但不能超出两条线段的y坐标所夹范围,问到达终点有几种方案. 思路:刚开始 ...
- [codeforces821E]Okabe and El Psy Kongroo
题意:(0,0)走到(k,0),每一部分有一条线段作为上界,求方案数. 解题关键:dp+矩阵快速幂,盗个图,注意ll 关于那条语句为什么不加也可以,因为我的矩阵C,就是因为多传了了len的原因,其他位 ...
- codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...
随机推荐
- (转)Python格式化字符 %s %d %f
Python格式化字符 %s %d %f 原文:http://blog.csdn.net/huangfu77/article/details/54807835 格式 描述%% 百分号标记 #就是输出一 ...
- 使用nodejs 访问mongodb
我使用了 express 框架 目录结构 db.js 文件 function connectionDB(hostname, port) { //注释地方暂时没有使用.是把官方代码照抄下来 // var ...
- 《腾讯游戏人生》微信小程序开发总结
为打通游戏人生擂台赛与线下商家的O2O衔接,同时响应时下日臻火热的微信小程序,项目团队决定也开发一款针对性的微信小程序,以此方便商家在我们平台入驻并进行擂台赛事的创建和奖励的核销,进一步推广擂台赛的玩 ...
- 移动端本地 H5 秒开方案探索与实现
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 企业微信移动端项目中有需求要展示数据趋势的可视化图表,经过调研,最终决定以单页面 H5 来完成,对 APP 里的一些使用 H5 实现的功能模 ...
- JS的从理解对象到创建对象
JavaScript不是一门真正的面向对象语言,因为它连最基本的类的概念都没有,因此它的对象和基于类的语言中的对象也会有所不同.ECMA-262把对象定义为:“无序属性的集合,其属性可以包含基本值.对 ...
- 日期控件html
日期控件多的是,这里收录的是最简单的一种 <html> <head> <script type="text/javascript"> funct ...
- 洛谷P4632 [APIO2018] New Home 新家(动态开节点线段树 二分答案 扫描线 set)
题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). ...
- html+css动态篇
transition过渡 transform旋转 animation动画 一般是父div包含两个子div,一个写鼠标悬浮之前,一个写鼠标悬浮之后, 鼠标悬浮之后的div要写overflow:hidde ...
- 【Linux】Linux 找回Root用户密码
Root密码破解 Linux 忘记Root密码 ? 技术学习基本原则:不作恶 一.破解步骤 1.在系统启动时进入grub选项菜单 2.在grub选项菜单按e进入编辑模式 3.编辑kernel那行添加/ ...
- matlab练习程序(弧形投影)
这个其实也算是圆柱体投影了,不过上一篇文章是从正面看,得到的是凸形的结果,而这个是从反面看,得到的是凹形的结果. 计算公式就不写了,大致介绍一下,计算公式中关于x坐标求法和上篇一样,y坐标则正好是上篇 ...